MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a2 27286
Description: Lemma 2 for clwlkclwwlklem2a 27291. (Contributed by Alexander van der Vekens, 21-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2a2 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
Distinct variable group:   𝑥,𝑃
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem clwlkclwwlklem2a2
StepHypRef Expression
1 lencl 13553 . . . 4 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
2 nn0z 11690 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
32adantr 473 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℤ)
4 0red 10332 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ∈ ℝ)
5 2re 11387 . . . . . . 7 2 ∈ ℝ
65a1i 11 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ)
7 nn0re 11590 . . . . . . 7 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
87adantr 473 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ)
9 2pos 11423 . . . . . . 7 0 < 2
109a1i 11 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < 2)
11 simpr 478 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
124, 6, 8, 10, 11ltletrd 10487 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < (♯‘𝑃))
13 elnnz 11676 . . . . 5 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℤ ∧ 0 < (♯‘𝑃)))
143, 12, 13sylanbrc 579 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ)
151, 14sylan 576 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ)
16 nnm1nn0 11623 . . 3 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
1715, 16syl 17 . 2 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ0)
18 fvex 6424 . . . 4 (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ V
19 fvex 6424 . . . 4 (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ V
2018, 19ifex 4325 . . 3 if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) ∈ V
21 clwlkclwwlklem2.f . . 3 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2220, 21fnmpti 6233 . 2 𝐹 Fn (0..^((♯‘𝑃) − 1))
23 ffzo0hash 13482 . 2 ((((♯‘𝑃) − 1) ∈ ℕ0𝐹 Fn (0..^((♯‘𝑃) − 1))) → (♯‘𝐹) = ((♯‘𝑃) − 1))
2417, 22, 23sylancl 581 1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  ifcif 4277  {cpr 4370   class class class wbr 4843  cmpt 4922  ccnv 5311   Fn wfn 6096  cfv 6101  (class class class)co 6878  cr 10223  0cc0 10224  1c1 10225   + caddc 10227   < clt 10363  cle 10364  cmin 10556  cn 11312  2c2 11368  0cn0 11580  cz 11666  ..^cfzo 12720  chash 13370  Word cword 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535
This theorem is referenced by:  clwlkclwwlklem2a3  27287  clwlkclwwlklem2a  27291
  Copyright terms: Public domain W3C validator