Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwlkclwwlklem2a2 | Structured version Visualization version GIF version |
Description: Lemma 2 for clwlkclwwlklem2a 27882. (Contributed by Alexander van der Vekens, 21-Jun-2018.) |
Ref | Expression |
---|---|
clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
Ref | Expression |
---|---|
clwlkclwwlklem2a2 | ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lencl 13932 | . . . 4 ⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0) | |
2 | nn0z 12044 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
3 | 2 | adantr 484 | . . . . 5 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℤ) |
4 | 0red 10682 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ∈ ℝ) | |
5 | 2re 11748 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ) |
7 | nn0re 11943 | . . . . . . 7 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ) | |
8 | 7 | adantr 484 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ) |
9 | 2pos 11777 | . . . . . . 7 ⊢ 0 < 2 | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < 2) |
11 | simpr 488 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃)) | |
12 | 4, 6, 8, 10, 11 | ltletrd 10838 | . . . . 5 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < (♯‘𝑃)) |
13 | elnnz 12030 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℤ ∧ 0 < (♯‘𝑃))) | |
14 | 3, 12, 13 | sylanbrc 586 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ) |
15 | 1, 14 | sylan 583 | . . 3 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ) |
16 | nnm1nn0 11975 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ0) |
18 | fvex 6671 | . . . 4 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) ∈ V | |
19 | fvex 6671 | . . . 4 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) ∈ V | |
20 | 18, 19 | ifex 4470 | . . 3 ⊢ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) ∈ V |
21 | clwlkclwwlklem2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
22 | 20, 21 | fnmpti 6474 | . 2 ⊢ 𝐹 Fn (0..^((♯‘𝑃) − 1)) |
23 | ffzo0hash 13857 | . 2 ⊢ ((((♯‘𝑃) − 1) ∈ ℕ0 ∧ 𝐹 Fn (0..^((♯‘𝑃) − 1))) → (♯‘𝐹) = ((♯‘𝑃) − 1)) | |
24 | 17, 22, 23 | sylancl 589 | 1 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ifcif 4420 {cpr 4524 class class class wbr 5032 ↦ cmpt 5112 ◡ccnv 5523 Fn wfn 6330 ‘cfv 6335 (class class class)co 7150 ℝcr 10574 0cc0 10575 1c1 10576 + caddc 10578 < clt 10713 ≤ cle 10714 − cmin 10908 ℕcn 11674 2c2 11729 ℕ0cn0 11934 ℤcz 12020 ..^cfzo 13082 ♯chash 13740 Word cword 13913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 |
This theorem is referenced by: clwlkclwwlklem2a3 27878 clwlkclwwlklem2a 27882 |
Copyright terms: Public domain | W3C validator |