| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlklem2a2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for clwlkclwwlklem2a 29979. (Contributed by Alexander van der Vekens, 21-Jun-2018.) |
| Ref | Expression |
|---|---|
| clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
| Ref | Expression |
|---|---|
| clwlkclwwlklem2a2 | ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl 14551 | . . . 4 ⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0) | |
| 2 | nn0z 12613 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℤ) |
| 4 | 0red 11238 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ∈ ℝ) | |
| 5 | 2re 12314 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ) |
| 7 | nn0re 12510 | . . . . . . 7 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ) |
| 9 | 2pos 12343 | . . . . . . 7 ⊢ 0 < 2 | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < 2) |
| 11 | simpr 484 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃)) | |
| 12 | 4, 6, 8, 10, 11 | ltletrd 11395 | . . . . 5 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < (♯‘𝑃)) |
| 13 | elnnz 12598 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℤ ∧ 0 < (♯‘𝑃))) | |
| 14 | 3, 12, 13 | sylanbrc 583 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ) |
| 15 | 1, 14 | sylan 580 | . . 3 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ) |
| 16 | nnm1nn0 12542 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ0) |
| 18 | fvex 6889 | . . . 4 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) ∈ V | |
| 19 | fvex 6889 | . . . 4 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) ∈ V | |
| 20 | 18, 19 | ifex 4551 | . . 3 ⊢ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) ∈ V |
| 21 | clwlkclwwlklem2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
| 22 | 20, 21 | fnmpti 6681 | . 2 ⊢ 𝐹 Fn (0..^((♯‘𝑃) − 1)) |
| 23 | ffzo0hash 14467 | . 2 ⊢ ((((♯‘𝑃) − 1) ∈ ℕ0 ∧ 𝐹 Fn (0..^((♯‘𝑃) − 1))) → (♯‘𝐹) = ((♯‘𝑃) − 1)) | |
| 24 | 17, 22, 23 | sylancl 586 | 1 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 {cpr 4603 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 − cmin 11466 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ℤcz 12588 ..^cfzo 13671 ♯chash 14348 Word cword 14531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 |
| This theorem is referenced by: clwlkclwwlklem2a3 29975 clwlkclwwlklem2a 29979 |
| Copyright terms: Public domain | W3C validator |