MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a2 29111
Description: Lemma 2 for clwlkclwwlklem2a 29116. (Contributed by Alexander van der Vekens, 21-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2a2 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
Distinct variable group:   𝑥,𝑃
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem clwlkclwwlklem2a2
StepHypRef Expression
1 lencl 14465 . . . 4 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
2 nn0z 12565 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
32adantr 481 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℤ)
4 0red 11199 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ∈ ℝ)
5 2re 12268 . . . . . . 7 2 ∈ ℝ
65a1i 11 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ)
7 nn0re 12463 . . . . . . 7 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
87adantr 481 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ)
9 2pos 12297 . . . . . . 7 0 < 2
109a1i 11 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < 2)
11 simpr 485 . . . . . 6 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
124, 6, 8, 10, 11ltletrd 11356 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < (♯‘𝑃))
13 elnnz 12550 . . . . 5 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℤ ∧ 0 < (♯‘𝑃)))
143, 12, 13sylanbrc 583 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ)
151, 14sylan 580 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ)
16 nnm1nn0 12495 . . 3 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
1715, 16syl 17 . 2 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ0)
18 fvex 6891 . . . 4 (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ V
19 fvex 6891 . . . 4 (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ V
2018, 19ifex 4572 . . 3 if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) ∈ V
21 clwlkclwwlklem2.f . . 3 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2220, 21fnmpti 6680 . 2 𝐹 Fn (0..^((♯‘𝑃) − 1))
23 ffzo0hash 14390 . 2 ((((♯‘𝑃) − 1) ∈ ℕ0𝐹 Fn (0..^((♯‘𝑃) − 1))) → (♯‘𝐹) = ((♯‘𝑃) − 1))
2417, 22, 23sylancl 586 1 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ifcif 4522  {cpr 4624   class class class wbr 5141  cmpt 5224  ccnv 5668   Fn wfn 6527  cfv 6532  (class class class)co 7393  cr 11091  0cc0 11092  1c1 11093   + caddc 11095   < clt 11230  cle 11231  cmin 11426  cn 12194  2c2 12249  0cn0 12454  cz 12540  ..^cfzo 13609  chash 14272  Word cword 14446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-fzo 13610  df-hash 14273  df-word 14447
This theorem is referenced by:  clwlkclwwlklem2a3  29112  clwlkclwwlklem2a  29116
  Copyright terms: Public domain W3C validator