![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkclwwlklem2a2 | Structured version Visualization version GIF version |
Description: Lemma 2 for clwlkclwwlklem2a 27468. (Contributed by Alexander van der Vekens, 21-Jun-2018.) |
Ref | Expression |
---|---|
clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
Ref | Expression |
---|---|
clwlkclwwlklem2a2 | ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lencl 13734 | . . . 4 ⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0) | |
2 | nn0z 11859 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
3 | 2 | adantr 481 | . . . . 5 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℤ) |
4 | 0red 10495 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ∈ ℝ) | |
5 | 2re 11564 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ) |
7 | nn0re 11759 | . . . . . . 7 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ) | |
8 | 7 | adantr 481 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ) |
9 | 2pos 11593 | . . . . . . 7 ⊢ 0 < 2 | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < 2) |
11 | simpr 485 | . . . . . 6 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃)) | |
12 | 4, 6, 8, 10, 11 | ltletrd 10652 | . . . . 5 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 < (♯‘𝑃)) |
13 | elnnz 11844 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℤ ∧ 0 < (♯‘𝑃))) | |
14 | 3, 12, 13 | sylanbrc 583 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ) |
15 | 1, 14 | sylan 580 | . . 3 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ) |
16 | nnm1nn0 11791 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ0) |
18 | fvex 6556 | . . . 4 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) ∈ V | |
19 | fvex 6556 | . . . 4 ⊢ (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) ∈ V | |
20 | 18, 19 | ifex 4433 | . . 3 ⊢ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) ∈ V |
21 | clwlkclwwlklem2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
22 | 20, 21 | fnmpti 6364 | . 2 ⊢ 𝐹 Fn (0..^((♯‘𝑃) − 1)) |
23 | ffzo0hash 13660 | . 2 ⊢ ((((♯‘𝑃) − 1) ∈ ℕ0 ∧ 𝐹 Fn (0..^((♯‘𝑃) − 1))) → (♯‘𝐹) = ((♯‘𝑃) − 1)) | |
24 | 17, 22, 23 | sylancl 586 | 1 ⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ifcif 4385 {cpr 4478 class class class wbr 4966 ↦ cmpt 5045 ◡ccnv 5447 Fn wfn 6225 ‘cfv 6230 (class class class)co 7021 ℝcr 10387 0cc0 10388 1c1 10389 + caddc 10391 < clt 10526 ≤ cle 10527 − cmin 10722 ℕcn 11491 2c2 11545 ℕ0cn0 11750 ℤcz 11834 ..^cfzo 12888 ♯chash 13545 Word cword 13712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-1st 7550 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-oadd 7962 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-card 9219 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-n0 11751 df-z 11835 df-uz 12099 df-fz 12748 df-fzo 12889 df-hash 13546 df-word 13713 |
This theorem is referenced by: clwlkclwwlklem2a3 27464 clwlkclwwlklem2a 27468 |
Copyright terms: Public domain | W3C validator |