MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknwwlkncl Structured version   Visualization version   GIF version

Theorem clwwlknwwlkncl 30082
Description: Obtaining a closed walk (as word) by appending the first symbol to the word representing a walk. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 22-Mar-2022.)
Assertion
Ref Expression
clwwlknwwlkncl (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊

Proof of Theorem clwwlknwwlkncl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlknnn 30062 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2 eqid 2735 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
32clwwlknbp 30064 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁))
4 eqid 2735 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
52, 4clwwlknp 30066 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
6 3simpc 1149 . . 3 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
75, 6syl 17 . 2 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
8 eqid 2735 . . 3 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
98clwwlkel 30075 . 2 ((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)})
101, 3, 7, 9syl3anc 1370 1 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  {cpr 4633  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  cn 12264  ..^cfzo 13691  chash 14366  Word cword 14549  lastSclsw 14597   ++ cconcat 14605  ⟨“cs1 14630  Vtxcvtx 29028  Edgcedg 29079   WWalksN cwwlksn 29856   ClWWalksN cclwwlkn 30053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-wwlks 29860  df-wwlksn 29861  df-clwwlk 30011  df-clwwlkn 30054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator