| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknp | Structured version Visualization version GIF version | ||
| Description: Properties of a set being a closed walk (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 23-Mar-2022.) |
| Ref | Expression |
|---|---|
| isclwwlknx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isclwwlknx.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknp | ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwwlknx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | clwwlknbp 30054 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) | |
| 4 | clwwlknnn 30052 | . . . . . . 7 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ) | |
| 5 | isclwwlknx.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | 1, 5 | isclwwlknx 30055 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁))) |
| 7 | 3simpc 1151 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) | |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
| 9 | 6, 8 | biimtrdi 253 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
| 10 | 4, 9 | mpcom 38 | . . . . . 6 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
| 12 | oveq1 7438 | . . . . . . . . 9 ⊢ ((♯‘𝑊) = 𝑁 → ((♯‘𝑊) − 1) = (𝑁 − 1)) | |
| 13 | 12 | oveq2d 7447 | . . . . . . . 8 ⊢ ((♯‘𝑊) = 𝑁 → (0..^((♯‘𝑊) − 1)) = (0..^(𝑁 − 1))) |
| 14 | 13 | raleqdv 3326 | . . . . . . 7 ⊢ ((♯‘𝑊) = 𝑁 → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
| 15 | 14 | anbi1d 631 | . . . . . 6 ⊢ ((♯‘𝑊) = 𝑁 → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
| 16 | 15 | ad2antll 729 | . . . . 5 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
| 17 | 11, 16 | mpbid 232 | . . . 4 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
| 18 | 3, 17 | jca 511 | . . 3 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
| 19 | 2, 18 | mpdan 687 | . 2 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
| 20 | 3anass 1095 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))) | |
| 21 | 19, 20 | sylibr 234 | 1 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {cpr 4628 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 − cmin 11492 ℕcn 12266 ..^cfzo 13694 ♯chash 14369 Word cword 14552 lastSclsw 14600 Vtxcvtx 29013 Edgcedg 29064 ClWWalksN cclwwlkn 30043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-clwwlk 30001 df-clwwlkn 30044 |
| This theorem is referenced by: clwwlknlbonbgr1 30058 clwwlkfo 30069 clwwlknwwlkncl 30072 wwlksubclwwlk 30077 umgr2cwwk2dif 30083 clwwlknun 30131 2clwwlk2clwwlklem 30365 |
| Copyright terms: Public domain | W3C validator |