Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5 Structured version   Visualization version   GIF version

Theorem ovolval5 44243
Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5.a (𝜑𝐴 ⊆ ℝ)
ovolval5.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval5 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝑦,𝑀   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑓)

Proof of Theorem ovolval5
Dummy variables 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval5.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 eqeq1 2740 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
32anbi2d 630 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
43rexbidv 3172 . . . . 5 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
5 coeq2 5780 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((,) ∘ 𝑔) = ((,) ∘ 𝑓))
65rneqd 5859 . . . . . . . . . 10 (𝑔 = 𝑓 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
76unieqd 4858 . . . . . . . . 9 (𝑔 = 𝑓 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
87sseq2d 3958 . . . . . . . 8 (𝑔 = 𝑓 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝑓)))
9 coeq2 5780 . . . . . . . . . 10 (𝑔 = 𝑓 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝑓))
109fveq2d 6808 . . . . . . . . 9 (𝑔 = 𝑓 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
1110eqeq2d 2747 . . . . . . . 8 (𝑔 = 𝑓 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
128, 11anbi12d 632 . . . . . . 7 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
1312cbvrexvw 3223 . . . . . 6 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
1413a1i 11 . . . . 5 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
154, 14bitrd 279 . . . 4 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
1615cbvrabv 3433 . . 3 {𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
171, 16ovolval4 44239 . 2 (𝜑 → (vol*‘𝐴) = inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ))
18 ovolval5.m . . . 4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
1910eqeq2d 2747 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
208, 19anbi12d 632 . . . . . . . 8 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2120cbvrexvw 3223 . . . . . . 7 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2221a1i 11 . . . . . 6 (𝑥 = 𝑧 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
23 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2423anbi2d 630 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2524rexbidv 3172 . . . . . 6 (𝑥 = 𝑧 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2622, 25bitrd 279 . . . . 5 (𝑥 = 𝑧 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2726cbvrabv 3433 . . . 4 {𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
2818, 27ovolval5lem3 44242 . . 3 inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ) = inf(𝑀, ℝ*, < )
2928a1i 11 . 2 (𝜑 → inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
3017, 29eqtrd 2776 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wrex 3071  {crab 3284  wss 3892   cuni 4844   × cxp 5598  ran crn 5601  ccom 5604  cfv 6458  (class class class)co 7307  m cmap 8646  infcinf 9244  cr 10916  *cxr 11054   < clt 11055  cn 12019  (,)cioo 13125  [,)cico 13127  vol*covol 24671  volcvol 24672  Σ^csumge0 43950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fi 9214  df-sup 9245  df-inf 9246  df-oi 9313  df-dju 9703  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-ioo 13129  df-ico 13131  df-icc 13132  df-fz 13286  df-fzo 13429  df-fl 13558  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-clim 15242  df-rlim 15243  df-sum 15443  df-rest 17178  df-topgen 17199  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-top 22088  df-topon 22105  df-bases 22141  df-cmp 22583  df-ovol 24673  df-vol 24674  df-sumge0 43951
This theorem is referenced by:  ovnovollem3  44246
  Copyright terms: Public domain W3C validator