Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5 Structured version   Visualization version   GIF version

Theorem ovolval5 45669
Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5.a (𝜑𝐴 ⊆ ℝ)
ovolval5.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval5 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝑦,𝑀   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑓)

Proof of Theorem ovolval5
Dummy variables 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval5.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 eqeq1 2734 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
32anbi2d 627 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
43rexbidv 3176 . . . . 5 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
5 coeq2 5857 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((,) ∘ 𝑔) = ((,) ∘ 𝑓))
65rneqd 5936 . . . . . . . . . 10 (𝑔 = 𝑓 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
76unieqd 4921 . . . . . . . . 9 (𝑔 = 𝑓 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
87sseq2d 4013 . . . . . . . 8 (𝑔 = 𝑓 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝑓)))
9 coeq2 5857 . . . . . . . . . 10 (𝑔 = 𝑓 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝑓))
109fveq2d 6894 . . . . . . . . 9 (𝑔 = 𝑓 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
1110eqeq2d 2741 . . . . . . . 8 (𝑔 = 𝑓 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
128, 11anbi12d 629 . . . . . . 7 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
1312cbvrexvw 3233 . . . . . 6 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
1413a1i 11 . . . . 5 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
154, 14bitrd 278 . . . 4 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
1615cbvrabv 3440 . . 3 {𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
171, 16ovolval4 45665 . 2 (𝜑 → (vol*‘𝐴) = inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ))
18 ovolval5.m . . . 4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
1910eqeq2d 2741 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
208, 19anbi12d 629 . . . . . . . 8 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2120cbvrexvw 3233 . . . . . . 7 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2221a1i 11 . . . . . 6 (𝑥 = 𝑧 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
23 eqeq1 2734 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2423anbi2d 627 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2524rexbidv 3176 . . . . . 6 (𝑥 = 𝑧 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2622, 25bitrd 278 . . . . 5 (𝑥 = 𝑧 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2726cbvrabv 3440 . . . 4 {𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
2818, 27ovolval5lem3 45668 . . 3 inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ) = inf(𝑀, ℝ*, < )
2928a1i 11 . 2 (𝜑 → inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
3017, 29eqtrd 2770 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wrex 3068  {crab 3430  wss 3947   cuni 4907   × cxp 5673  ran crn 5676  ccom 5679  cfv 6542  (class class class)co 7411  m cmap 8822  infcinf 9438  cr 11111  *cxr 11251   < clt 11252  cn 12216  (,)cioo 13328  [,)cico 13330  vol*covol 25211  volcvol 25212  Σ^csumge0 45376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637  df-rest 17372  df-topgen 17393  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-top 22616  df-topon 22633  df-bases 22669  df-cmp 23111  df-ovol 25213  df-vol 25214  df-sumge0 45377
This theorem is referenced by:  ovnovollem3  45672
  Copyright terms: Public domain W3C validator