Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5 Structured version   Visualization version   GIF version

Theorem ovolval5 44147
Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5.a (𝜑𝐴 ⊆ ℝ)
ovolval5.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval5 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝑦,𝑀   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑓)

Proof of Theorem ovolval5
Dummy variables 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval5.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 eqeq1 2743 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
32anbi2d 628 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
43rexbidv 3227 . . . . 5 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
5 coeq2 5764 . . . . . . . . . . 11 (𝑔 = 𝑓 → ((,) ∘ 𝑔) = ((,) ∘ 𝑓))
65rneqd 5844 . . . . . . . . . 10 (𝑔 = 𝑓 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
76unieqd 4858 . . . . . . . . 9 (𝑔 = 𝑓 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓))
87sseq2d 3957 . . . . . . . 8 (𝑔 = 𝑓 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝑓)))
9 coeq2 5764 . . . . . . . . . 10 (𝑔 = 𝑓 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝑓))
109fveq2d 6772 . . . . . . . . 9 (𝑔 = 𝑓 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
1110eqeq2d 2750 . . . . . . . 8 (𝑔 = 𝑓 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
128, 11anbi12d 630 . . . . . . 7 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
1312cbvrexvw 3381 . . . . . 6 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
1413a1i 11 . . . . 5 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
154, 14bitrd 278 . . . 4 (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
1615cbvrabv 3424 . . 3 {𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
171, 16ovolval4 44143 . 2 (𝜑 → (vol*‘𝐴) = inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ))
18 ovolval5.m . . . 4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ([,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
1910eqeq2d 2750 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
208, 19anbi12d 630 . . . . . . . 8 (𝑔 = 𝑓 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2120cbvrexvw 3381 . . . . . . 7 (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2221a1i 11 . . . . . 6 (𝑥 = 𝑧 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
23 eqeq1 2743 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
2423anbi2d 628 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2524rexbidv 3227 . . . . . 6 (𝑥 = 𝑧 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2622, 25bitrd 278 . . . . 5 (𝑥 = 𝑧 → (∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
2726cbvrabv 3424 . . . 4 {𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
2818, 27ovolval5lem3 44146 . . 3 inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ) = inf(𝑀, ℝ*, < )
2928a1i 11 . 2 (𝜑 → inf({𝑥 ∈ ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑥 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
3017, 29eqtrd 2779 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wrex 3066  {crab 3069  wss 3891   cuni 4844   × cxp 5586  ran crn 5589  ccom 5592  cfv 6430  (class class class)co 7268  m cmap 8589  infcinf 9161  cr 10854  *cxr 10992   < clt 10993  cn 11956  (,)cioo 13061  [,)cico 13063  vol*covol 24607  volcvol 24608  Σ^csumge0 43854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-rlim 15179  df-sum 15379  df-rest 17114  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-top 22024  df-topon 22041  df-bases 22077  df-cmp 22519  df-ovol 24609  df-vol 24610  df-sumge0 43855
This theorem is referenced by:  ovnovollem3  44150
  Copyright terms: Public domain W3C validator