Step | Hyp | Ref
| Expression |
1 | | ovolval5.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
2 | | eqeq1 2743 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)))) |
3 | 2 | anbi2d 628 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))))) |
4 | 3 | rexbidv 3227 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑔 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))))) |
5 | | coeq2 5764 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → ((,) ∘ 𝑔) = ((,) ∘ 𝑓)) |
6 | 5 | rneqd 5844 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝑓)) |
7 | 6 | unieqd 4858 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → ∪ ran ((,)
∘ 𝑔) = ∪ ran ((,) ∘ 𝑓)) |
8 | 7 | sseq2d 3957 |
. . . . . . . 8
⊢ (𝑔 = 𝑓 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ↔
𝐴 ⊆ ∪ ran ((,) ∘ 𝑓))) |
9 | | coeq2 5764 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘
𝑓)) |
10 | 9 | fveq2d 6772 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 →
(Σ^‘((vol ∘ (,)) ∘ 𝑔)) =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))) |
11 | 10 | eqeq2d 2750 |
. . . . . . . 8
⊢ (𝑔 = 𝑓 → (𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))) |
12 | 8, 11 | anbi12d 630 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
13 | 12 | cbvrexvw 3381 |
. . . . . 6
⊢
(∃𝑔 ∈
((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))) |
14 | 13 | a1i 11 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
15 | 4, 14 | bitrd 278 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑔 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
16 | 15 | cbvrabv 3424 |
. . 3
⊢ {𝑥 ∈ ℝ*
∣ ∃𝑔 ∈
((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))} |
17 | 1, 16 | ovolval4 44143 |
. 2
⊢ (𝜑 → (vol*‘𝐴) = inf({𝑥 ∈ ℝ* ∣
∃𝑔 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, <
)) |
18 | | ovolval5.m |
. . . 4
⊢ 𝑀 = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))} |
19 | 10 | eqeq2d 2750 |
. . . . . . . . 9
⊢ (𝑔 = 𝑓 → (𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))) |
20 | 8, 19 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑔 = 𝑓 → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
21 | 20 | cbvrexvw 3381 |
. . . . . . 7
⊢
(∃𝑔 ∈
((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))) |
22 | 21 | a1i 11 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃𝑔 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
23 | | eqeq1 2743 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))) |
24 | 23 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
25 | 24 | rexbidv 3227 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
26 | 22, 25 | bitrd 278 |
. . . . 5
⊢ (𝑥 = 𝑧 → (∃𝑔 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
27 | 26 | cbvrabv 3424 |
. . . 4
⊢ {𝑥 ∈ ℝ*
∣ ∃𝑔 ∈
((ℝ × ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)))} = {𝑧 ∈ ℝ* ∣
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))} |
28 | 18, 27 | ovolval5lem3 44146 |
. . 3
⊢
inf({𝑥 ∈
ℝ* ∣ ∃𝑔 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, <
) = inf(𝑀,
ℝ*, < ) |
29 | 28 | a1i 11 |
. 2
⊢ (𝜑 → inf({𝑥 ∈ ℝ* ∣
∃𝑔 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑥 =
(Σ^‘((vol ∘ (,)) ∘ 𝑔)))}, ℝ*, <
) = inf(𝑀,
ℝ*, < )) |
30 | 17, 29 | eqtrd 2779 |
1
⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, <
)) |