Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubaddlem2 Structured version   Visualization version   GIF version

Theorem ovnsubaddlem2 44802
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsubaddlem2.x (𝜑𝑋 ∈ Fin)
ovnsubaddlem2.n0 (𝜑𝑋 ≠ ∅)
ovnsubaddlem2.a (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
ovnsubaddlem2.e (𝜑𝐸 ∈ ℝ+)
ovnsubaddlem2.z 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
ovnsubaddlem2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovnsubaddlem2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovnsubaddlem2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
Assertion
Ref Expression
ovnsubaddlem2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑎,𝑒,𝑖,𝑗,𝑛   𝐴,𝑘,𝑙,𝑎,𝑖,𝑗,𝑛   𝑧,𝐴,𝑎,𝑖,𝑗,𝑘,𝑛   𝐶,𝑎,𝑒,𝑖   𝐷,𝑎,𝑒,𝑖,𝑗,𝑛   𝐷,𝑘   𝐸,𝑎,𝑒,𝑖,𝑗,𝑛   𝑘,𝐸   𝐿,𝑎,𝑒,𝑖,𝑗,𝑛   𝑋,𝑎,𝑒,𝑖,𝑗,𝑛   ,𝑋,𝑘,𝑖,𝑗   𝑋,𝑙   𝑧,𝑋   𝜑,𝑎,𝑒,𝑖,𝑗,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑧,,𝑙)   𝐴()   𝐶(𝑧,,𝑗,𝑘,𝑛,𝑙)   𝐷(𝑧,,𝑙)   𝐸(𝑧,,𝑙)   𝐿(𝑧,,𝑘,𝑙)   𝑍(𝑧,𝑒,,𝑖,𝑗,𝑘,𝑛,𝑎,𝑙)

Proof of Theorem ovnsubaddlem2
Dummy variables 𝑓 𝑔 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6855 . . . 4 ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∈ V
2 nnenom 13885 . . . 4 ℕ ≈ ω
31, 2axcc3 10374 . . 3 𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → 𝑔 Fn ℕ)
5 nfv 1917 . . . . . . . . 9 𝑛𝜑
6 nfra1 3267 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
75, 6nfan 1902 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
8 rspa 3231 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
98adantll 712 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
10 ovnsubaddlem2.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ Fin)
1110adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
12 ovnsubaddlem2.n0 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
1312adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ≠ ∅)
14 ovnsubaddlem2.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
1514adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
16 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1715, 16ffvelcdmd 7036 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
18 elpwi 4567 . . . . . . . . . . . . . . . . 17 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1917, 18syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
20 ovnsubaddlem2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
2120adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
22 nnnn0 12420 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
23 2nn 12226 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
26 nnexpcl 13980 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2724, 25, 26syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ)
28 nnrp 12926 . . . . . . . . . . . . . . . . . . . 20 ((2↑𝑛) ∈ ℕ → (2↑𝑛) ∈ ℝ+)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℝ+)
3022, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
3130adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
3221, 31rpdivcld 12974 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈ ℝ+)
33 ovnsubaddlem2.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
34 ovnsubaddlem2.l . . . . . . . . . . . . . . . 16 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
35 ovnsubaddlem2.d . . . . . . . . . . . . . . . 16 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
3611, 13, 19, 32, 33, 34, 35ovncvrrp 44795 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
37 n0 4306 . . . . . . . . . . . . . . 15 (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
3836, 37sylibr 233 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
3938adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
40 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4139, 40mpd 15 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4241ex 413 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4342adantlr 713 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
449, 43mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4544ex 413 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑛 ∈ ℕ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
467, 45ralrimi 3240 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4746adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
484, 47jca 512 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4948ex 413 . . . 4 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
5049eximdv 1920 . . 3 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
513, 50mpi 20 . 2 (𝜑 → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
52 simpl 483 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝜑)
53 simprl 769 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝑔 Fn ℕ)
54 simprr 771 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
55 nnf1oxpnn 43405 . . . . . 6 𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ)
56 simpl1 1191 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝜑)
57 simpl2 1192 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑔 Fn ℕ)
58 fveq2 6842 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → (𝑔𝑞) = (𝑔𝑛))
59 2fveq3 6847 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐷‘(𝐴𝑞)) = (𝐷‘(𝐴𝑛)))
60 oveq2 7365 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑛 → (2↑𝑞) = (2↑𝑛))
6160oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐸 / (2↑𝑞)) = (𝐸 / (2↑𝑛)))
6259, 61fveq12d 6849 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) = ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6358, 62eleq12d 2832 . . . . . . . . . . . . 13 (𝑞 = 𝑛 → ((𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
6463cbvralvw 3225 . . . . . . . . . . . 12 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6564biimpri 227 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
66653ad2ant3 1135 . . . . . . . . . 10 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
6766adantr 481 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
68 simpr 485 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
6910adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
70693ad2antl1 1185 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
7112adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
72713ad2antl1 1185 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
7314adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
74733ad2antl1 1185 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
7520adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
76753ad2antl1 1185 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
77 ovnsubaddlem2.z . . . . . . . . . 10 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
78 coeq2 5814 . . . . . . . . . . . . . . 15 ( = 𝑖 → ([,) ∘ ) = ([,) ∘ 𝑖))
7978fveq1d 6844 . . . . . . . . . . . . . 14 ( = 𝑖 → (([,) ∘ )‘𝑘) = (([,) ∘ 𝑖)‘𝑘))
8079fveq2d 6846 . . . . . . . . . . . . 13 ( = 𝑖 → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(([,) ∘ 𝑖)‘𝑘)))
8180prodeq2ad 43823 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8281cbvmptv 5218 . . . . . . . . . . 11 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8334, 82eqtri 2764 . . . . . . . . . 10 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8464biimpi 215 . . . . . . . . . . . . 13 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
85843ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8685ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
87 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
88 rspa 3231 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8986, 87, 88syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
90 simpr 485 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
91 2fveq3 6847 . . . . . . . . . . . . 13 (𝑞 = 𝑚 → (1st ‘(𝑓𝑞)) = (1st ‘(𝑓𝑚)))
9291fveq2d 6846 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (𝑔‘(1st ‘(𝑓𝑞))) = (𝑔‘(1st ‘(𝑓𝑚))))
93 2fveq3 6847 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (2nd ‘(𝑓𝑞)) = (2nd ‘(𝑓𝑚)))
9492, 93fveq12d 6849 . . . . . . . . . . 11 (𝑞 = 𝑚 → ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞))) = ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9594cbvmptv 5218 . . . . . . . . . 10 (𝑞 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞)))) = (𝑚 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9670, 72, 74, 76, 77, 33, 83, 35, 89, 90, 95ovnsubaddlem1 44801 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9756, 57, 67, 68, 96syl31anc 1373 . . . . . . . 8 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9897ex 413 . . . . . . 7 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
9998exlimdv 1936 . . . . . 6 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10055, 99mpi 20 . . . . 5 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
10152, 53, 54, 100syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
102101ex 413 . . 3 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
103102exlimdv 1936 . 2 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10451, 103mpd 15 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  wss 3910  c0 4282  𝒫 cpw 4560   ciun 4954   class class class wbr 5105  cmpt 5188   × cxp 5631  ccom 5637   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  m cmap 8765  Xcixp 8835  Fincfn 8883  cr 11050  *cxr 11188  cle 11190   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  +crp 12915   +𝑒 cxad 13031  [,)cico 13266  cexp 13967  cprod 15788  volcvol 24827  Σ^csumge0 44593  voln*covoln 44767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-subg 18925  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829  df-sumge0 44594  df-ovoln 44768
This theorem is referenced by:  ovnsubadd  44803
  Copyright terms: Public domain W3C validator