Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubaddlem2 Structured version   Visualization version   GIF version

Theorem ovnsubaddlem2 41526
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsubaddlem2.x (𝜑𝑋 ∈ Fin)
ovnsubaddlem2.n0 (𝜑𝑋 ≠ ∅)
ovnsubaddlem2.a (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
ovnsubaddlem2.e (𝜑𝐸 ∈ ℝ+)
ovnsubaddlem2.z 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
ovnsubaddlem2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovnsubaddlem2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovnsubaddlem2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
Assertion
Ref Expression
ovnsubaddlem2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑎,𝑒,𝑖,𝑗,𝑛   𝐴,𝑘,𝑙,𝑎,𝑖,𝑗,𝑛   𝑧,𝐴,𝑎,𝑖,𝑗,𝑘,𝑛   𝐶,𝑎,𝑒,𝑖   𝐷,𝑎,𝑒,𝑖,𝑗,𝑛   𝐷,𝑘   𝐸,𝑎,𝑒,𝑖,𝑗,𝑛   𝑘,𝐸   𝐿,𝑎,𝑒,𝑖,𝑗,𝑛   𝑋,𝑎,𝑒,𝑖,𝑗,𝑛   ,𝑋,𝑘,𝑖,𝑗   𝑋,𝑙   𝑧,𝑋   𝜑,𝑎,𝑒,𝑖,𝑗,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑧,,𝑙)   𝐴()   𝐶(𝑧,,𝑗,𝑘,𝑛,𝑙)   𝐷(𝑧,,𝑙)   𝐸(𝑧,,𝑙)   𝐿(𝑧,,𝑘,𝑙)   𝑍(𝑧,𝑒,,𝑖,𝑗,𝑘,𝑛,𝑎,𝑙)

Proof of Theorem ovnsubaddlem2
Dummy variables 𝑓 𝑔 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6425 . . . 4 ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∈ V
2 nnenom 13033 . . . 4 ℕ ≈ ω
31, 2axcc3 9549 . . 3 𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4 simprl 788 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → 𝑔 Fn ℕ)
5 nfv 2010 . . . . . . . . 9 𝑛𝜑
6 nfra1 3123 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
75, 6nfan 1999 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
8 rspa 3112 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
98adantll 706 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
10 ovnsubaddlem2.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ Fin)
1110adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
12 ovnsubaddlem2.n0 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
1312adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ≠ ∅)
14 ovnsubaddlem2.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
1514adantr 473 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
16 simpr 478 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1715, 16ffvelrnd 6587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑𝑚 𝑋))
18 elpwi 4360 . . . . . . . . . . . . . . . . 17 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑𝑚 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑𝑚 𝑋))
1917, 18syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑𝑚 𝑋))
20 ovnsubaddlem2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
2120adantr 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
22 nnnn0 11587 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
23 2nn 11385 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
26 nnexpcl 13126 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2724, 25, 26syl2anc 580 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ)
28 nnrp 12086 . . . . . . . . . . . . . . . . . . . 20 ((2↑𝑛) ∈ ℕ → (2↑𝑛) ∈ ℝ+)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℝ+)
3022, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
3130adantl 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
3221, 31rpdivcld 12133 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈ ℝ+)
33 ovnsubaddlem2.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
34 ovnsubaddlem2.l . . . . . . . . . . . . . . . 16 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
35 ovnsubaddlem2.d . . . . . . . . . . . . . . . 16 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
3611, 13, 19, 32, 33, 34, 35ovncvrrp 41519 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
37 n0 4132 . . . . . . . . . . . . . . 15 (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
3836, 37sylibr 226 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
3938adantr 473 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
40 simpr 478 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4139, 40mpd 15 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4241ex 402 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4342adantlr 707 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
449, 43mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4544ex 402 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑛 ∈ ℕ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
467, 45ralrimi 3139 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4746adantrl 708 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
484, 47jca 508 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4948ex 402 . . . 4 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
5049eximdv 2013 . . 3 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
513, 50mpi 20 . 2 (𝜑 → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
52 simpl 475 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝜑)
53 simprl 788 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝑔 Fn ℕ)
54 simprr 790 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
55 nnf1oxpnn 40133 . . . . . 6 𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ)
56 simpl1 1243 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝜑)
57 simpl2 1245 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑔 Fn ℕ)
58 fveq2 6412 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → (𝑔𝑞) = (𝑔𝑛))
59 2fveq3 6417 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐷‘(𝐴𝑞)) = (𝐷‘(𝐴𝑛)))
60 oveq2 6887 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑛 → (2↑𝑞) = (2↑𝑛))
6160oveq2d 6895 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐸 / (2↑𝑞)) = (𝐸 / (2↑𝑛)))
6259, 61fveq12d 6419 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) = ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6358, 62eleq12d 2873 . . . . . . . . . . . . 13 (𝑞 = 𝑛 → ((𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
6463cbvralv 3355 . . . . . . . . . . . 12 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6564biimpri 220 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
66653ad2ant3 1166 . . . . . . . . . 10 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
6766adantr 473 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
68 simpr 478 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
6910adantr 473 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
70693ad2antl1 1237 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
7112adantr 473 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
72713ad2antl1 1237 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
7314adantr 473 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
74733ad2antl1 1237 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
7520adantr 473 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
76753ad2antl1 1237 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
77 ovnsubaddlem2.z . . . . . . . . . 10 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
78 coeq2 5485 . . . . . . . . . . . . . . 15 ( = 𝑖 → ([,) ∘ ) = ([,) ∘ 𝑖))
7978fveq1d 6414 . . . . . . . . . . . . . 14 ( = 𝑖 → (([,) ∘ )‘𝑘) = (([,) ∘ 𝑖)‘𝑘))
8079fveq2d 6416 . . . . . . . . . . . . 13 ( = 𝑖 → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(([,) ∘ 𝑖)‘𝑘)))
8180prodeq2ad 40563 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8281cbvmptv 4944 . . . . . . . . . . 11 ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = (𝑖 ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8334, 82eqtri 2822 . . . . . . . . . 10 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8464biimpi 208 . . . . . . . . . . . . 13 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
85843ad2ant3 1166 . . . . . . . . . . . 12 ((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8685ad2antrr 718 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
87 simpr 478 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
88 rspa 3112 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8986, 87, 88syl2anc 580 . . . . . . . . . 10 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
90 simpr 478 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
91 2fveq3 6417 . . . . . . . . . . . . 13 (𝑞 = 𝑚 → (1st ‘(𝑓𝑞)) = (1st ‘(𝑓𝑚)))
9291fveq2d 6416 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (𝑔‘(1st ‘(𝑓𝑞))) = (𝑔‘(1st ‘(𝑓𝑚))))
93 2fveq3 6417 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (2nd ‘(𝑓𝑞)) = (2nd ‘(𝑓𝑚)))
9492, 93fveq12d 6419 . . . . . . . . . . 11 (𝑞 = 𝑚 → ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞))) = ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9594cbvmptv 4944 . . . . . . . . . 10 (𝑞 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞)))) = (𝑚 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9670, 72, 74, 76, 77, 33, 83, 35, 89, 90, 95ovnsubaddlem1 41525 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9756, 57, 67, 68, 96syl31anc 1493 . . . . . . . 8 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9897ex 402 . . . . . . 7 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
9998exlimdv 2029 . . . . . 6 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10055, 99mpi 20 . . . . 5 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
10152, 53, 54, 100syl3anc 1491 . . . 4 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
102101ex 402 . . 3 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
103102exlimdv 2029 . 2 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10451, 103mpd 15 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wex 1875  wcel 2157  wne 2972  wral 3090  wrex 3091  {crab 3094  wss 3770  c0 4116  𝒫 cpw 4350   ciun 4711   class class class wbr 4844  cmpt 4923   × cxp 5311  ccom 5317   Fn wfn 6097  wf 6098  1-1-ontowf1o 6101  cfv 6102  (class class class)co 6879  1st c1st 7400  2nd c2nd 7401  𝑚 cmap 8096  Xcixp 8149  Fincfn 8196  cr 10224  *cxr 10363  cle 10365   / cdiv 10977  cn 11313  2c2 11367  0cn0 11579  +crp 12073   +𝑒 cxad 12190  [,)cico 12425  cexp 13113  cprod 14971  volcvol 23570  Σ^csumge0 41317  voln*covoln 41491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cc 9546  ax-ac2 9574  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303  ax-addf 10304  ax-mulf 10305
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-disj 4813  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-tpos 7591  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-pm 8099  df-ixp 8150  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fi 8560  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-acn 9055  df-ac 9226  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11580  df-z 11666  df-dec 11783  df-uz 11930  df-q 12033  df-rp 12074  df-xneg 12192  df-xadd 12193  df-xmul 12194  df-ioo 12427  df-ico 12429  df-icc 12430  df-fz 12580  df-fzo 12720  df-fl 12847  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-clim 14559  df-rlim 14560  df-sum 14757  df-prod 14972  df-struct 16185  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-ress 16191  df-plusg 16279  df-mulr 16280  df-starv 16281  df-tset 16285  df-ple 16286  df-ds 16288  df-unif 16289  df-rest 16397  df-0g 16416  df-topgen 16418  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-grp 17740  df-minusg 17741  df-subg 17903  df-cmn 18509  df-abl 18510  df-mgp 18805  df-ur 18817  df-ring 18864  df-cring 18865  df-oppr 18938  df-dvdsr 18956  df-unit 18957  df-invr 18987  df-dvr 18998  df-drng 19066  df-psmet 20059  df-xmet 20060  df-met 20061  df-bl 20062  df-mopn 20063  df-cnfld 20068  df-top 21026  df-topon 21043  df-bases 21078  df-cmp 21518  df-ovol 23571  df-vol 23572  df-sumge0 41318  df-ovoln 41492
This theorem is referenced by:  ovnsubadd  41527
  Copyright terms: Public domain W3C validator