| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvex 6919 | . . . 4
⊢ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ∈ V | 
| 2 |  | nnenom 14021 | . . . 4
⊢ ℕ
≈ ω | 
| 3 | 1, 2 | axcc3 10478 | . . 3
⊢
∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 4 |  | simprl 771 | . . . . . 6
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) → 𝑔 Fn ℕ) | 
| 5 |  | nfv 1914 | . . . . . . . . 9
⊢
Ⅎ𝑛𝜑 | 
| 6 |  | nfra1 3284 | . . . . . . . . 9
⊢
Ⅎ𝑛∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 7 | 5, 6 | nfan 1899 | . . . . . . . 8
⊢
Ⅎ𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 8 |  | rspa 3248 | . . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 9 | 8 | adantll 714 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 10 |  | ovnsubaddlem2.x | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ Fin) | 
| 11 | 10 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) | 
| 12 |  | ovnsubaddlem2.n0 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ≠ ∅) | 
| 13 | 12 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ≠ ∅) | 
| 14 |  | ovnsubaddlem2.a | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴:ℕ⟶𝒫 (ℝ
↑m 𝑋)) | 
| 15 | 14 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ
↑m 𝑋)) | 
| 16 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) | 
| 17 | 15, 16 | ffvelcdmd 7105 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ 𝒫 (ℝ
↑m 𝑋)) | 
| 18 |  | elpwi 4607 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴‘𝑛) ∈ 𝒫 (ℝ
↑m 𝑋)
→ (𝐴‘𝑛) ⊆ (ℝ
↑m 𝑋)) | 
| 19 | 17, 18 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ (ℝ ↑m 𝑋)) | 
| 20 |  | ovnsubaddlem2.e | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈
ℝ+) | 
| 21 | 20 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐸 ∈
ℝ+) | 
| 22 |  | nnnn0 12533 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) | 
| 23 |  | 2nn 12339 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℕ | 
| 24 | 23 | a1i 11 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ) | 
| 25 |  | id 22 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) | 
| 26 |  | nnexpcl 14115 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) | 
| 27 | 24, 25, 26 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℕ) | 
| 28 |  | nnrp 13046 | . . . . . . . . . . . . . . . . . . . 20
⊢
((2↑𝑛) ∈
ℕ → (2↑𝑛)
∈ ℝ+) | 
| 29 | 27, 28 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℝ+) | 
| 30 | 22, 29 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℝ+) | 
| 31 | 30 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℝ+) | 
| 32 | 21, 31 | rpdivcld 13094 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈
ℝ+) | 
| 33 |  | ovnsubaddlem2.c | . . . . . . . . . . . . . . . 16
⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) | 
| 34 |  | ovnsubaddlem2.l | . . . . . . . . . . . . . . . 16
⊢ 𝐿 = (ℎ ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
ℎ)‘𝑘))) | 
| 35 |  | ovnsubaddlem2.d | . . . . . . . . . . . . . . . 16
⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ (𝑒 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})) | 
| 36 | 11, 13, 19, 32, 33, 34, 35 | ovncvrrp 46579 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 37 |  | n0 4353 | . . . . . . . . . . . . . . 15
⊢ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 38 | 36, 37 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅) | 
| 39 | 38 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅) | 
| 40 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 41 | 39, 40 | mpd 15 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 42 | 41 | ex 412 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 43 | 42 | adantlr 715 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 44 | 9, 43 | mpd 15 | . . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 45 | 44 | ex 412 | . . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑛 ∈ ℕ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 46 | 7, 45 | ralrimi 3257 | . . . . . . 7
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 47 | 46 | adantrl 716 | . . . . . 6
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 48 | 4, 47 | jca 511 | . . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 49 | 48 | ex 412 | . . . 4
⊢ (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) | 
| 50 | 49 | eximdv 1917 | . . 3
⊢ (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) | 
| 51 | 3, 50 | mpi 20 | . 2
⊢ (𝜑 → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 52 |  | simpl 482 | . . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → 𝜑) | 
| 53 |  | simprl 771 | . . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → 𝑔 Fn ℕ) | 
| 54 |  | simprr 773 | . . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 55 |  | nnf1oxpnn 45200 | . . . . . 6
⊢
∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) | 
| 56 |  | simpl1 1192 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝜑) | 
| 57 |  | simpl2 1193 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑔 Fn ℕ) | 
| 58 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑛 → (𝑔‘𝑞) = (𝑔‘𝑛)) | 
| 59 |  | 2fveq3 6911 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = 𝑛 → (𝐷‘(𝐴‘𝑞)) = (𝐷‘(𝐴‘𝑛))) | 
| 60 |  | oveq2 7439 | . . . . . . . . . . . . . . . 16
⊢ (𝑞 = 𝑛 → (2↑𝑞) = (2↑𝑛)) | 
| 61 | 60 | oveq2d 7447 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = 𝑛 → (𝐸 / (2↑𝑞)) = (𝐸 / (2↑𝑛))) | 
| 62 | 59, 61 | fveq12d 6913 | . . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑛 → ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞))) = ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 63 | 58, 62 | eleq12d 2835 | . . . . . . . . . . . . 13
⊢ (𝑞 = 𝑛 → ((𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞))) ↔ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) | 
| 64 | 63 | cbvralvw 3237 | . . . . . . . . . . . 12
⊢
(∀𝑞 ∈
ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞))) ↔ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 65 | 64 | biimpri 228 | . . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) → ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) | 
| 66 | 65 | 3ad2ant3 1136 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) | 
| 67 | 66 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) →
∀𝑞 ∈ ℕ
(𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) | 
| 68 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) | 
| 69 | 10 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin) | 
| 70 | 69 | 3ad2antl1 1186 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin) | 
| 71 | 12 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅) | 
| 72 | 71 | 3ad2antl1 1186 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅) | 
| 73 | 14 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫
(ℝ ↑m 𝑋)) | 
| 74 | 73 | 3ad2antl1 1186 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫
(ℝ ↑m 𝑋)) | 
| 75 | 20 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈
ℝ+) | 
| 76 | 75 | 3ad2antl1 1186 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈
ℝ+) | 
| 77 |  | ovnsubaddlem2.z | . . . . . . . . . 10
⊢ 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) | 
| 78 |  | coeq2 5869 | . . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑖 → ([,) ∘ ℎ) = ([,) ∘ 𝑖)) | 
| 79 | 78 | fveq1d 6908 | . . . . . . . . . . . . . 14
⊢ (ℎ = 𝑖 → (([,) ∘ ℎ)‘𝑘) = (([,) ∘ 𝑖)‘𝑘)) | 
| 80 | 79 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (ℎ = 𝑖 → (vol‘(([,) ∘ ℎ)‘𝑘)) = (vol‘(([,) ∘ 𝑖)‘𝑘))) | 
| 81 | 80 | prodeq2ad 45607 | . . . . . . . . . . . 12
⊢ (ℎ = 𝑖 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) | 
| 82 | 81 | cbvmptv 5255 | . . . . . . . . . . 11
⊢ (ℎ ∈ ((ℝ ×
ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘))) = (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑘))) | 
| 83 | 34, 82 | eqtri 2765 | . . . . . . . . . 10
⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑘))) | 
| 84 | 64 | biimpi 216 | . . . . . . . . . . . . 13
⊢
(∀𝑞 ∈
ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 85 | 84 | 3ad2ant3 1136 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 86 | 85 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) →
∀𝑛 ∈ ℕ
(𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 87 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ) | 
| 88 |  | rspa 3248 | . . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 89 | 86, 87, 88 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) | 
| 90 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) | 
| 91 |  | 2fveq3 6911 | . . . . . . . . . . . . 13
⊢ (𝑞 = 𝑚 → (1st ‘(𝑓‘𝑞)) = (1st ‘(𝑓‘𝑚))) | 
| 92 | 91 | fveq2d 6910 | . . . . . . . . . . . 12
⊢ (𝑞 = 𝑚 → (𝑔‘(1st ‘(𝑓‘𝑞))) = (𝑔‘(1st ‘(𝑓‘𝑚)))) | 
| 93 |  | 2fveq3 6911 | . . . . . . . . . . . 12
⊢ (𝑞 = 𝑚 → (2nd ‘(𝑓‘𝑞)) = (2nd ‘(𝑓‘𝑚))) | 
| 94 | 92, 93 | fveq12d 6913 | . . . . . . . . . . 11
⊢ (𝑞 = 𝑚 → ((𝑔‘(1st ‘(𝑓‘𝑞)))‘(2nd ‘(𝑓‘𝑞))) = ((𝑔‘(1st ‘(𝑓‘𝑚)))‘(2nd ‘(𝑓‘𝑚)))) | 
| 95 | 94 | cbvmptv 5255 | . . . . . . . . . 10
⊢ (𝑞 ∈ ℕ ↦ ((𝑔‘(1st
‘(𝑓‘𝑞)))‘(2nd
‘(𝑓‘𝑞)))) = (𝑚 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓‘𝑚)))‘(2nd ‘(𝑓‘𝑚)))) | 
| 96 | 70, 72, 74, 76, 77, 33, 83, 35, 89, 90, 95 | ovnsubaddlem1 46585 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) →
((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) | 
| 97 | 56, 57, 67, 68, 96 | syl31anc 1375 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) →
((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) | 
| 98 | 97 | ex 412 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑓:ℕ–1-1-onto→(ℕ × ℕ) →
((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸))) | 
| 99 | 98 | exlimdv 1933 | . . . . . 6
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → (∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) →
((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸))) | 
| 100 | 55, 99 | mpi 20 | . . . . 5
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) | 
| 101 | 52, 53, 54, 100 | syl3anc 1373 | . . . 4
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) | 
| 102 | 101 | ex 412 | . . 3
⊢ (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸))) | 
| 103 | 102 | exlimdv 1933 | . 2
⊢ (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸))) | 
| 104 | 51, 103 | mpd 15 | 1
⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |