Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubaddlem2 Structured version   Visualization version   GIF version

Theorem ovnsubaddlem2 44109
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsubaddlem2.x (𝜑𝑋 ∈ Fin)
ovnsubaddlem2.n0 (𝜑𝑋 ≠ ∅)
ovnsubaddlem2.a (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
ovnsubaddlem2.e (𝜑𝐸 ∈ ℝ+)
ovnsubaddlem2.z 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
ovnsubaddlem2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovnsubaddlem2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovnsubaddlem2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
Assertion
Ref Expression
ovnsubaddlem2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑎,𝑒,𝑖,𝑗,𝑛   𝐴,𝑘,𝑙,𝑎,𝑖,𝑗,𝑛   𝑧,𝐴,𝑎,𝑖,𝑗,𝑘,𝑛   𝐶,𝑎,𝑒,𝑖   𝐷,𝑎,𝑒,𝑖,𝑗,𝑛   𝐷,𝑘   𝐸,𝑎,𝑒,𝑖,𝑗,𝑛   𝑘,𝐸   𝐿,𝑎,𝑒,𝑖,𝑗,𝑛   𝑋,𝑎,𝑒,𝑖,𝑗,𝑛   ,𝑋,𝑘,𝑖,𝑗   𝑋,𝑙   𝑧,𝑋   𝜑,𝑎,𝑒,𝑖,𝑗,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑧,,𝑙)   𝐴()   𝐶(𝑧,,𝑗,𝑘,𝑛,𝑙)   𝐷(𝑧,,𝑙)   𝐸(𝑧,,𝑙)   𝐿(𝑧,,𝑘,𝑙)   𝑍(𝑧,𝑒,,𝑖,𝑗,𝑘,𝑛,𝑎,𝑙)

Proof of Theorem ovnsubaddlem2
Dummy variables 𝑓 𝑔 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . . . 4 ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∈ V
2 nnenom 13700 . . . 4 ℕ ≈ ω
31, 2axcc3 10194 . . 3 𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → 𝑔 Fn ℕ)
5 nfv 1917 . . . . . . . . 9 𝑛𝜑
6 nfra1 3144 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
75, 6nfan 1902 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
8 rspa 3132 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
98adantll 711 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
10 ovnsubaddlem2.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ Fin)
1110adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
12 ovnsubaddlem2.n0 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
1312adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ≠ ∅)
14 ovnsubaddlem2.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
1514adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
16 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1715, 16ffvelrnd 6962 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
18 elpwi 4542 . . . . . . . . . . . . . . . . 17 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1917, 18syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
20 ovnsubaddlem2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
2120adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
22 nnnn0 12240 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
23 2nn 12046 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
26 nnexpcl 13795 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2724, 25, 26syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ)
28 nnrp 12741 . . . . . . . . . . . . . . . . . . . 20 ((2↑𝑛) ∈ ℕ → (2↑𝑛) ∈ ℝ+)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℝ+)
3022, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
3130adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
3221, 31rpdivcld 12789 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈ ℝ+)
33 ovnsubaddlem2.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
34 ovnsubaddlem2.l . . . . . . . . . . . . . . . 16 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
35 ovnsubaddlem2.d . . . . . . . . . . . . . . . 16 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
3611, 13, 19, 32, 33, 34, 35ovncvrrp 44102 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
37 n0 4280 . . . . . . . . . . . . . . 15 (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
3836, 37sylibr 233 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
3938adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
40 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4139, 40mpd 15 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4241ex 413 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4342adantlr 712 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
449, 43mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4544ex 413 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑛 ∈ ℕ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
467, 45ralrimi 3141 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4746adantrl 713 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
484, 47jca 512 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4948ex 413 . . . 4 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
5049eximdv 1920 . . 3 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
513, 50mpi 20 . 2 (𝜑 → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
52 simpl 483 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝜑)
53 simprl 768 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝑔 Fn ℕ)
54 simprr 770 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
55 nnf1oxpnn 42734 . . . . . 6 𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ)
56 simpl1 1190 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝜑)
57 simpl2 1191 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑔 Fn ℕ)
58 fveq2 6774 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → (𝑔𝑞) = (𝑔𝑛))
59 2fveq3 6779 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐷‘(𝐴𝑞)) = (𝐷‘(𝐴𝑛)))
60 oveq2 7283 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑛 → (2↑𝑞) = (2↑𝑛))
6160oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐸 / (2↑𝑞)) = (𝐸 / (2↑𝑛)))
6259, 61fveq12d 6781 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) = ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6358, 62eleq12d 2833 . . . . . . . . . . . . 13 (𝑞 = 𝑛 → ((𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
6463cbvralvw 3383 . . . . . . . . . . . 12 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6564biimpri 227 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
66653ad2ant3 1134 . . . . . . . . . 10 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
6766adantr 481 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
68 simpr 485 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
6910adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
70693ad2antl1 1184 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
7112adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
72713ad2antl1 1184 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
7314adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
74733ad2antl1 1184 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
7520adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
76753ad2antl1 1184 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
77 ovnsubaddlem2.z . . . . . . . . . 10 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
78 coeq2 5767 . . . . . . . . . . . . . . 15 ( = 𝑖 → ([,) ∘ ) = ([,) ∘ 𝑖))
7978fveq1d 6776 . . . . . . . . . . . . . 14 ( = 𝑖 → (([,) ∘ )‘𝑘) = (([,) ∘ 𝑖)‘𝑘))
8079fveq2d 6778 . . . . . . . . . . . . 13 ( = 𝑖 → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(([,) ∘ 𝑖)‘𝑘)))
8180prodeq2ad 43133 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8281cbvmptv 5187 . . . . . . . . . . 11 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8334, 82eqtri 2766 . . . . . . . . . 10 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8464biimpi 215 . . . . . . . . . . . . 13 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
85843ad2ant3 1134 . . . . . . . . . . . 12 ((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8685ad2antrr 723 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
87 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
88 rspa 3132 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8986, 87, 88syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
90 simpr 485 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
91 2fveq3 6779 . . . . . . . . . . . . 13 (𝑞 = 𝑚 → (1st ‘(𝑓𝑞)) = (1st ‘(𝑓𝑚)))
9291fveq2d 6778 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (𝑔‘(1st ‘(𝑓𝑞))) = (𝑔‘(1st ‘(𝑓𝑚))))
93 2fveq3 6779 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (2nd ‘(𝑓𝑞)) = (2nd ‘(𝑓𝑚)))
9492, 93fveq12d 6781 . . . . . . . . . . 11 (𝑞 = 𝑚 → ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞))) = ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9594cbvmptv 5187 . . . . . . . . . 10 (𝑞 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞)))) = (𝑚 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9670, 72, 74, 76, 77, 33, 83, 35, 89, 90, 95ovnsubaddlem1 44108 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9756, 57, 67, 68, 96syl31anc 1372 . . . . . . . 8 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9897ex 413 . . . . . . 7 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
9998exlimdv 1936 . . . . . 6 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10055, 99mpi 20 . . . . 5 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
10152, 53, 54, 100syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
102101ex 413 . . 3 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
103102exlimdv 1936 . 2 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10451, 103mpd 15 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3887  c0 4256  𝒫 cpw 4533   ciun 4924   class class class wbr 5074  cmpt 5157   × cxp 5587  ccom 5593   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Xcixp 8685  Fincfn 8733  cr 10870  *cxr 11008  cle 11010   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  +crp 12730   +𝑒 cxad 12846  [,)cico 13081  cexp 13782  cprod 15615  volcvol 24627  Σ^csumge0 43900  voln*covoln 44074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629  df-sumge0 43901  df-ovoln 44075
This theorem is referenced by:  ovnsubadd  44110
  Copyright terms: Public domain W3C validator