| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6894 |
. . . 4
⊢ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ∈ V |
| 2 | | nnenom 14003 |
. . . 4
⊢ ℕ
≈ ω |
| 3 | 1, 2 | axcc3 10457 |
. . 3
⊢
∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 4 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) → 𝑔 Fn ℕ) |
| 5 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝜑 |
| 6 | | nfra1 3270 |
. . . . . . . . 9
⊢
Ⅎ𝑛∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 7 | 5, 6 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 8 | | rspa 3235 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 9 | 8 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 10 | | ovnsubaddlem2.x |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 11 | 10 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
| 12 | | ovnsubaddlem2.n0 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ≠ ∅) |
| 13 | 12 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ≠ ∅) |
| 14 | | ovnsubaddlem2.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴:ℕ⟶𝒫 (ℝ
↑m 𝑋)) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ
↑m 𝑋)) |
| 16 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 17 | 15, 16 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ 𝒫 (ℝ
↑m 𝑋)) |
| 18 | | elpwi 4587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴‘𝑛) ∈ 𝒫 (ℝ
↑m 𝑋)
→ (𝐴‘𝑛) ⊆ (ℝ
↑m 𝑋)) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ (ℝ ↑m 𝑋)) |
| 20 | | ovnsubaddlem2.e |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐸 ∈
ℝ+) |
| 22 | | nnnn0 12513 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 23 | | 2nn 12318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℕ |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ) |
| 25 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
| 26 | | nnexpcl 14097 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
| 27 | 24, 25, 26 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℕ) |
| 28 | | nnrp 13025 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2↑𝑛) ∈
ℕ → (2↑𝑛)
∈ ℝ+) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℝ+) |
| 30 | 22, 29 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℝ+) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℝ+) |
| 32 | 21, 31 | rpdivcld 13073 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈
ℝ+) |
| 33 | | ovnsubaddlem2.c |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑙 ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
| 34 | | ovnsubaddlem2.l |
. . . . . . . . . . . . . . . 16
⊢ 𝐿 = (ℎ ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
ℎ)‘𝑘))) |
| 35 | | ovnsubaddlem2.d |
. . . . . . . . . . . . . . . 16
⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ (𝑒 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})) |
| 36 | 11, 13, 19, 32, 33, 34, 35 | ovncvrrp 46573 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 37 | | n0 4333 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 38 | 36, 37 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅) |
| 39 | 38 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅) |
| 40 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 41 | 39, 40 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 42 | 41 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 43 | 42 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 44 | 9, 43 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 45 | 44 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑛 ∈ ℕ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 46 | 7, 45 | ralrimi 3244 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 47 | 46 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 48 | 4, 47 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 49 | 48 | ex 412 |
. . . 4
⊢ (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) |
| 50 | 49 | eximdv 1917 |
. . 3
⊢ (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))))) |
| 51 | 3, 50 | mpi 20 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 52 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → 𝜑) |
| 53 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → 𝑔 Fn ℕ) |
| 54 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 55 | | nnf1oxpnn 45199 |
. . . . . 6
⊢
∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) |
| 56 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝜑) |
| 57 | | simpl2 1193 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑔 Fn ℕ) |
| 58 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑛 → (𝑔‘𝑞) = (𝑔‘𝑛)) |
| 59 | | 2fveq3 6886 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = 𝑛 → (𝐷‘(𝐴‘𝑞)) = (𝐷‘(𝐴‘𝑛))) |
| 60 | | oveq2 7418 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 𝑛 → (2↑𝑞) = (2↑𝑛)) |
| 61 | 60 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = 𝑛 → (𝐸 / (2↑𝑞)) = (𝐸 / (2↑𝑛))) |
| 62 | 59, 61 | fveq12d 6888 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑛 → ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞))) = ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 63 | 58, 62 | eleq12d 2829 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑛 → ((𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞))) ↔ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) |
| 64 | 63 | cbvralvw 3224 |
. . . . . . . . . . . 12
⊢
(∀𝑞 ∈
ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞))) ↔ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 65 | 64 | biimpri 228 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) → ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) |
| 66 | 65 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) |
| 67 | 66 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) →
∀𝑞 ∈ ℕ
(𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) |
| 68 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) |
| 69 | 10 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin) |
| 70 | 69 | 3ad2antl1 1186 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin) |
| 71 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅) |
| 72 | 71 | 3ad2antl1 1186 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅) |
| 73 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫
(ℝ ↑m 𝑋)) |
| 74 | 73 | 3ad2antl1 1186 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫
(ℝ ↑m 𝑋)) |
| 75 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈
ℝ+) |
| 76 | 75 | 3ad2antl1 1186 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈
ℝ+) |
| 77 | | ovnsubaddlem2.z |
. . . . . . . . . 10
⊢ 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
| 78 | | coeq2 5843 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑖 → ([,) ∘ ℎ) = ([,) ∘ 𝑖)) |
| 79 | 78 | fveq1d 6883 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑖 → (([,) ∘ ℎ)‘𝑘) = (([,) ∘ 𝑖)‘𝑘)) |
| 80 | 79 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑖 → (vol‘(([,) ∘ ℎ)‘𝑘)) = (vol‘(([,) ∘ 𝑖)‘𝑘))) |
| 81 | 80 | prodeq2ad 45601 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑖 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) |
| 82 | 81 | cbvmptv 5230 |
. . . . . . . . . . 11
⊢ (ℎ ∈ ((ℝ ×
ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘))) = (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑘))) |
| 83 | 34, 82 | eqtri 2759 |
. . . . . . . . . 10
⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑘))) |
| 84 | 64 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
(∀𝑞 ∈
ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 85 | 84 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 86 | 85 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) →
∀𝑛 ∈ ℕ
(𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 87 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ) |
| 88 | | rspa 3235 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 89 | 86, 87, 88 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 90 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) |
| 91 | | 2fveq3 6886 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑚 → (1st ‘(𝑓‘𝑞)) = (1st ‘(𝑓‘𝑚))) |
| 92 | 91 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑚 → (𝑔‘(1st ‘(𝑓‘𝑞))) = (𝑔‘(1st ‘(𝑓‘𝑚)))) |
| 93 | | 2fveq3 6886 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑚 → (2nd ‘(𝑓‘𝑞)) = (2nd ‘(𝑓‘𝑚))) |
| 94 | 92, 93 | fveq12d 6888 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑚 → ((𝑔‘(1st ‘(𝑓‘𝑞)))‘(2nd ‘(𝑓‘𝑞))) = ((𝑔‘(1st ‘(𝑓‘𝑚)))‘(2nd ‘(𝑓‘𝑚)))) |
| 95 | 94 | cbvmptv 5230 |
. . . . . . . . . 10
⊢ (𝑞 ∈ ℕ ↦ ((𝑔‘(1st
‘(𝑓‘𝑞)))‘(2nd
‘(𝑓‘𝑞)))) = (𝑚 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓‘𝑚)))‘(2nd ‘(𝑓‘𝑚)))) |
| 96 | 70, 72, 74, 76, 77, 33, 83, 35, 89, 90, 95 | ovnsubaddlem1 46579 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔‘𝑞) ∈ ((𝐷‘(𝐴‘𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) →
((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |
| 97 | 56, 57, 67, 68, 96 | syl31anc 1375 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) →
((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |
| 98 | 97 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑓:ℕ–1-1-onto→(ℕ × ℕ) →
((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸))) |
| 99 | 98 | exlimdv 1933 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → (∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) →
((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸))) |
| 100 | 55, 99 | mpi 20 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |
| 101 | 52, 53, 54, 100 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))))) → ((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |
| 102 | 101 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸))) |
| 103 | 102 | exlimdv 1933 |
. 2
⊢ (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸))) |
| 104 | 51, 103 | mpd 15 |
1
⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |