Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubaddlem2 Structured version   Visualization version   GIF version

Theorem ovnsubaddlem2 43999
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsubaddlem2.x (𝜑𝑋 ∈ Fin)
ovnsubaddlem2.n0 (𝜑𝑋 ≠ ∅)
ovnsubaddlem2.a (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
ovnsubaddlem2.e (𝜑𝐸 ∈ ℝ+)
ovnsubaddlem2.z 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
ovnsubaddlem2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovnsubaddlem2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovnsubaddlem2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
Assertion
Ref Expression
ovnsubaddlem2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑎,𝑒,𝑖,𝑗,𝑛   𝐴,𝑘,𝑙,𝑎,𝑖,𝑗,𝑛   𝑧,𝐴,𝑎,𝑖,𝑗,𝑘,𝑛   𝐶,𝑎,𝑒,𝑖   𝐷,𝑎,𝑒,𝑖,𝑗,𝑛   𝐷,𝑘   𝐸,𝑎,𝑒,𝑖,𝑗,𝑛   𝑘,𝐸   𝐿,𝑎,𝑒,𝑖,𝑗,𝑛   𝑋,𝑎,𝑒,𝑖,𝑗,𝑛   ,𝑋,𝑘,𝑖,𝑗   𝑋,𝑙   𝑧,𝑋   𝜑,𝑎,𝑒,𝑖,𝑗,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑧,,𝑙)   𝐴()   𝐶(𝑧,,𝑗,𝑘,𝑛,𝑙)   𝐷(𝑧,,𝑙)   𝐸(𝑧,,𝑙)   𝐿(𝑧,,𝑘,𝑙)   𝑍(𝑧,𝑒,,𝑖,𝑗,𝑘,𝑛,𝑎,𝑙)

Proof of Theorem ovnsubaddlem2
Dummy variables 𝑓 𝑔 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6769 . . . 4 ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∈ V
2 nnenom 13628 . . . 4 ℕ ≈ ω
31, 2axcc3 10125 . . 3 𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → 𝑔 Fn ℕ)
5 nfv 1918 . . . . . . . . 9 𝑛𝜑
6 nfra1 3142 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
75, 6nfan 1903 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
8 rspa 3130 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
98adantll 710 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
10 ovnsubaddlem2.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ Fin)
1110adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
12 ovnsubaddlem2.n0 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
1312adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ≠ ∅)
14 ovnsubaddlem2.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
1514adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
16 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1715, 16ffvelrnd 6944 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
18 elpwi 4539 . . . . . . . . . . . . . . . . 17 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
1917, 18syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑m 𝑋))
20 ovnsubaddlem2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
2120adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
22 nnnn0 12170 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
23 2nn 11976 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
26 nnexpcl 13723 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2724, 25, 26syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ)
28 nnrp 12670 . . . . . . . . . . . . . . . . . . . 20 ((2↑𝑛) ∈ ℕ → (2↑𝑛) ∈ ℝ+)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℝ+)
3022, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
3130adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
3221, 31rpdivcld 12718 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈ ℝ+)
33 ovnsubaddlem2.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
34 ovnsubaddlem2.l . . . . . . . . . . . . . . . 16 𝐿 = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
35 ovnsubaddlem2.d . . . . . . . . . . . . . . . 16 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
3611, 13, 19, 32, 33, 34, 35ovncvrrp 43992 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
37 n0 4277 . . . . . . . . . . . . . . 15 (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
3836, 37sylibr 233 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
3938adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
40 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4139, 40mpd 15 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4241ex 412 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4342adantlr 711 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
449, 43mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4544ex 412 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑛 ∈ ℕ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
467, 45ralrimi 3139 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4746adantrl 712 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
484, 47jca 511 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4948ex 412 . . . 4 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
5049eximdv 1921 . . 3 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
513, 50mpi 20 . 2 (𝜑 → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
52 simpl 482 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝜑)
53 simprl 767 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝑔 Fn ℕ)
54 simprr 769 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
55 nnf1oxpnn 42623 . . . . . 6 𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ)
56 simpl1 1189 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝜑)
57 simpl2 1190 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑔 Fn ℕ)
58 fveq2 6756 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → (𝑔𝑞) = (𝑔𝑛))
59 2fveq3 6761 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐷‘(𝐴𝑞)) = (𝐷‘(𝐴𝑛)))
60 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑛 → (2↑𝑞) = (2↑𝑛))
6160oveq2d 7271 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐸 / (2↑𝑞)) = (𝐸 / (2↑𝑛)))
6259, 61fveq12d 6763 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) = ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6358, 62eleq12d 2833 . . . . . . . . . . . . 13 (𝑞 = 𝑛 → ((𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
6463cbvralvw 3372 . . . . . . . . . . . 12 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6564biimpri 227 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
66653ad2ant3 1133 . . . . . . . . . 10 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
6766adantr 480 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
68 simpr 484 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
6910adantr 480 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
70693ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
7112adantr 480 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
72713ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
7314adantr 480 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
74733ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑m 𝑋))
7520adantr 480 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
76753ad2antl1 1183 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
77 ovnsubaddlem2.z . . . . . . . . . 10 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
78 coeq2 5756 . . . . . . . . . . . . . . 15 ( = 𝑖 → ([,) ∘ ) = ([,) ∘ 𝑖))
7978fveq1d 6758 . . . . . . . . . . . . . 14 ( = 𝑖 → (([,) ∘ )‘𝑘) = (([,) ∘ 𝑖)‘𝑘))
8079fveq2d 6760 . . . . . . . . . . . . 13 ( = 𝑖 → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(([,) ∘ 𝑖)‘𝑘)))
8180prodeq2ad 43023 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8281cbvmptv 5183 . . . . . . . . . . 11 ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8334, 82eqtri 2766 . . . . . . . . . 10 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8464biimpi 215 . . . . . . . . . . . . 13 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
85843ad2ant3 1133 . . . . . . . . . . . 12 ((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8685ad2antrr 722 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
87 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
88 rspa 3130 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8986, 87, 88syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
90 simpr 484 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
91 2fveq3 6761 . . . . . . . . . . . . 13 (𝑞 = 𝑚 → (1st ‘(𝑓𝑞)) = (1st ‘(𝑓𝑚)))
9291fveq2d 6760 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (𝑔‘(1st ‘(𝑓𝑞))) = (𝑔‘(1st ‘(𝑓𝑚))))
93 2fveq3 6761 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (2nd ‘(𝑓𝑞)) = (2nd ‘(𝑓𝑚)))
9492, 93fveq12d 6763 . . . . . . . . . . 11 (𝑞 = 𝑚 → ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞))) = ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9594cbvmptv 5183 . . . . . . . . . 10 (𝑞 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞)))) = (𝑚 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9670, 72, 74, 76, 77, 33, 83, 35, 89, 90, 95ovnsubaddlem1 43998 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9756, 57, 67, 68, 96syl31anc 1371 . . . . . . . 8 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9897ex 412 . . . . . . 7 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
9998exlimdv 1937 . . . . . 6 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10055, 99mpi 20 . . . . 5 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
10152, 53, 54, 100syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
102101ex 412 . . 3 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
103102exlimdv 1937 . 2 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10451, 103mpd 15 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883  c0 4253  𝒫 cpw 4530   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  ccom 5584   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Xcixp 8643  Fincfn 8691  cr 10801  *cxr 10939  cle 10941   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  +crp 12659   +𝑒 cxad 12775  [,)cico 13010  cexp 13710  cprod 15543  volcvol 24532  Σ^csumge0 43790  voln*covoln 43964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-sumge0 43791  df-ovoln 43965
This theorem is referenced by:  ovnsubadd  44000
  Copyright terms: Public domain W3C validator