![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoiprodcl2 | Structured version Visualization version GIF version |
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoiprodcl2.kph | ⊢ Ⅎ𝑘𝜑 |
hoiprodcl2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
hoiprodcl2.l | ⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) |
hoiprodcl2.i | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoiprodcl2 | ⊢ (𝜑 → (𝐿‘𝐼) ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoiprodcl2.l | . . 3 ⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) | |
2 | coeq2 5848 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → ([,) ∘ 𝑖) = ([,) ∘ 𝐼)) | |
3 | 2 | fveq1d 6883 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (([,) ∘ 𝑖)‘𝑘) = (([,) ∘ 𝐼)‘𝑘)) |
4 | 3 | fveq2d 6885 | . . . . 5 ⊢ (𝑖 = 𝐼 → (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ 𝐼)‘𝑘))) |
5 | 4 | ralrimivw 3142 | . . . 4 ⊢ (𝑖 = 𝐼 → ∀𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ 𝐼)‘𝑘))) |
6 | 5 | prodeq2d 15863 | . . 3 ⊢ (𝑖 = 𝐼 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘))) |
7 | hoiprodcl2.i | . . . 4 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
8 | reex 11197 | . . . . . . . 8 ⊢ ℝ ∈ V | |
9 | 8, 8 | xpex 7733 | . . . . . . 7 ⊢ (ℝ × ℝ) ∈ V |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × ℝ) ∈ V) |
11 | hoiprodcl2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
12 | 10, 11 | jca 511 | . . . . 5 ⊢ (𝜑 → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin)) |
13 | elmapg 8829 | . . . . 5 ⊢ (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → (𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ 𝐼:𝑋⟶(ℝ × ℝ))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ 𝐼:𝑋⟶(ℝ × ℝ))) |
15 | 7, 14 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋)) |
16 | hoiprodcl2.kph | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
17 | 16, 11, 7 | hoiprodcl 45748 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) |
18 | 1, 6, 15, 17 | fvmptd3 7011 | . 2 ⊢ (𝜑 → (𝐿‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘))) |
19 | 18, 17 | eqeltrd 2825 | 1 ⊢ (𝜑 → (𝐿‘𝐼) ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Vcvv 3466 ↦ cmpt 5221 × cxp 5664 ∘ ccom 5670 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 ↑m cmap 8816 Fincfn 8935 ℝcr 11105 0cc0 11106 +∞cpnf 11242 [,)cico 13323 ∏cprod 15846 volcvol 25314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-rlim 15430 df-sum 15630 df-prod 15847 df-rest 17367 df-topgen 17388 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-top 22718 df-topon 22735 df-bases 22771 df-cmp 23213 df-ovol 25315 df-vol 25316 |
This theorem is referenced by: ovnlecvr 45759 ovnsubaddlem1 45771 |
Copyright terms: Public domain | W3C validator |