Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodcl2 Structured version   Visualization version   GIF version

Theorem hoiprodcl2 45756
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoiprodcl2.kph 𝑘𝜑
hoiprodcl2.x (𝜑𝑋 ∈ Fin)
hoiprodcl2.l 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
hoiprodcl2.i (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoiprodcl2 (𝜑 → (𝐿𝐼) ∈ (0[,)+∞))
Distinct variable groups:   𝑖,𝐼,𝑘   𝑖,𝑋,𝑘   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑘)   𝐿(𝑖,𝑘)

Proof of Theorem hoiprodcl2
StepHypRef Expression
1 hoiprodcl2.l . . 3 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
2 coeq2 5848 . . . . . . 7 (𝑖 = 𝐼 → ([,) ∘ 𝑖) = ([,) ∘ 𝐼))
32fveq1d 6883 . . . . . 6 (𝑖 = 𝐼 → (([,) ∘ 𝑖)‘𝑘) = (([,) ∘ 𝐼)‘𝑘))
43fveq2d 6885 . . . . 5 (𝑖 = 𝐼 → (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ 𝐼)‘𝑘)))
54ralrimivw 3142 . . . 4 (𝑖 = 𝐼 → ∀𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ 𝐼)‘𝑘)))
65prodeq2d 15863 . . 3 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)))
7 hoiprodcl2.i . . . 4 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
8 reex 11197 . . . . . . . 8 ℝ ∈ V
98, 8xpex 7733 . . . . . . 7 (ℝ × ℝ) ∈ V
109a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ) ∈ V)
11 hoiprodcl2.x . . . . . 6 (𝜑𝑋 ∈ Fin)
1210, 11jca 511 . . . . 5 (𝜑 → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin))
13 elmapg 8829 . . . . 5 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → (𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ 𝐼:𝑋⟶(ℝ × ℝ)))
1412, 13syl 17 . . . 4 (𝜑 → (𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ 𝐼:𝑋⟶(ℝ × ℝ)))
157, 14mpbird 257 . . 3 (𝜑𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋))
16 hoiprodcl2.kph . . . 4 𝑘𝜑
1716, 11, 7hoiprodcl 45748 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
181, 6, 15, 17fvmptd3 7011 . 2 (𝜑 → (𝐿𝐼) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)))
1918, 17eqeltrd 2825 1 (𝜑 → (𝐿𝐼) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wnf 1777  wcel 2098  Vcvv 3466  cmpt 5221   × cxp 5664  ccom 5670  wf 6529  cfv 6533  (class class class)co 7401  m cmap 8816  Fincfn 8935  cr 11105  0cc0 11106  +∞cpnf 11242  [,)cico 13323  cprod 15846  volcvol 25314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-prod 15847  df-rest 17367  df-topgen 17388  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-top 22718  df-topon 22735  df-bases 22771  df-cmp 23213  df-ovol 25315  df-vol 25316
This theorem is referenced by:  ovnlecvr  45759  ovnsubaddlem1  45771
  Copyright terms: Public domain W3C validator