Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodcl2 Structured version   Visualization version   GIF version

Theorem hoiprodcl2 45732
Description: The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
hoiprodcl2.kph 𝑘𝜑
hoiprodcl2.x (𝜑𝑋 ∈ Fin)
hoiprodcl2.l 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
hoiprodcl2.i (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoiprodcl2 (𝜑 → (𝐿𝐼) ∈ (0[,)+∞))
Distinct variable groups:   𝑖,𝐼,𝑘   𝑖,𝑋,𝑘   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑘)   𝐿(𝑖,𝑘)

Proof of Theorem hoiprodcl2
StepHypRef Expression
1 hoiprodcl2.l . . 3 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
2 coeq2 5858 . . . . . . 7 (𝑖 = 𝐼 → ([,) ∘ 𝑖) = ([,) ∘ 𝐼))
32fveq1d 6893 . . . . . 6 (𝑖 = 𝐼 → (([,) ∘ 𝑖)‘𝑘) = (([,) ∘ 𝐼)‘𝑘))
43fveq2d 6895 . . . . 5 (𝑖 = 𝐼 → (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ 𝐼)‘𝑘)))
54ralrimivw 3149 . . . 4 (𝑖 = 𝐼 → ∀𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = (vol‘(([,) ∘ 𝐼)‘𝑘)))
65prodeq2d 15873 . . 3 (𝑖 = 𝐼 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)))
7 hoiprodcl2.i . . . 4 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
8 reex 11207 . . . . . . . 8 ℝ ∈ V
98, 8xpex 7744 . . . . . . 7 (ℝ × ℝ) ∈ V
109a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ) ∈ V)
11 hoiprodcl2.x . . . . . 6 (𝜑𝑋 ∈ Fin)
1210, 11jca 511 . . . . 5 (𝜑 → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin))
13 elmapg 8839 . . . . 5 (((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → (𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ 𝐼:𝑋⟶(ℝ × ℝ)))
1412, 13syl 17 . . . 4 (𝜑 → (𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋) ↔ 𝐼:𝑋⟶(ℝ × ℝ)))
157, 14mpbird 257 . . 3 (𝜑𝐼 ∈ ((ℝ × ℝ) ↑m 𝑋))
16 hoiprodcl2.kph . . . 4 𝑘𝜑
1716, 11, 7hoiprodcl 45724 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞))
181, 6, 15, 17fvmptd3 7021 . 2 (𝜑 → (𝐿𝐼) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)))
1918, 17eqeltrd 2832 1 (𝜑 → (𝐿𝐼) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wnf 1784  wcel 2105  Vcvv 3473  cmpt 5231   × cxp 5674  ccom 5680  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8826  Fincfn 8945  cr 11115  0cc0 11116  +∞cpnf 11252  [,)cico 13333  cprod 15856  volcvol 25312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-rlim 15440  df-sum 15640  df-prod 15857  df-rest 17375  df-topgen 17396  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-top 22716  df-topon 22733  df-bases 22769  df-cmp 23211  df-ovol 25313  df-vol 25314
This theorem is referenced by:  ovnlecvr  45735  ovnsubaddlem1  45747
  Copyright terms: Public domain W3C validator