MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regamcl Structured version   Visualization version   GIF version

Theorem regamcl 26206
Description: The Gamma function is real for real input. (Contributed by Mario Carneiro, 9-Jul-2017.)
Assertion
Ref Expression
regamcl (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℝ)

Proof of Theorem regamcl
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4066 . . . . . 6 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → 𝐴 ∈ ℝ)
21recnd 11002 . . . . 5 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → 𝐴 ∈ ℂ)
3 eldifn 4067 . . . . 5 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → ¬ 𝐴 ∈ (ℤ ∖ ℕ))
42, 3eldifd 3903 . . . 4 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
5 gamcl 26189 . . . 4 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℂ)
64, 5syl 17 . . 3 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℂ)
74dmgmn0 26171 . . 3 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → 𝐴 ≠ 0)
86, 2, 7divcan4d 11755 . 2 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (((Γ‘𝐴) · 𝐴) / 𝐴) = (Γ‘𝐴))
9 nnuz 12618 . . . 4 ℕ = (ℤ‘1)
10 1zzd 12349 . . . 4 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → 1 ∈ ℤ)
11 eqid 2740 . . . . 5 (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))) = (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))
1211, 4gamcvg2 26205 . . . 4 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → seq1( · , (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))) ⇝ ((Γ‘𝐴) · 𝐴))
13 simpr 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
1413peano2nnd 11988 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
1514nnrpd 12767 . . . . . . . . . . . 12 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
1613nnrpd 12767 . . . . . . . . . . . 12 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
1715, 16rpdivcld 12786 . . . . . . . . . . 11 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1817rpred 12769 . . . . . . . . . 10 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ)
1917rpge0d 12773 . . . . . . . . . 10 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → 0 ≤ ((𝑚 + 1) / 𝑚))
201adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℝ)
2118, 19, 20recxpcld 25874 . . . . . . . . 9 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) / 𝑚)↑𝑐𝐴) ∈ ℝ)
2220, 13nndivred 12025 . . . . . . . . . 10 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℝ)
23 1red 10975 . . . . . . . . . 10 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → 1 ∈ ℝ)
2422, 23readdcld 11003 . . . . . . . . 9 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℝ)
254adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2625, 13dmgmdivn0 26173 . . . . . . . . 9 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0)
2721, 24, 26redivcld 11801 . . . . . . . 8 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑚 ∈ ℕ) → ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)) ∈ ℝ)
2827fmpttd 6984 . . . . . . 7 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))):ℕ⟶ℝ)
2928ffvelrnda 6956 . . . . . 6 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))‘𝑛) ∈ ℝ)
30 remulcl 10955 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑛 · 𝑥) ∈ ℝ)
3130adantl 482 . . . . . 6 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ (𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑛 · 𝑥) ∈ ℝ)
329, 10, 29, 31seqf 13740 . . . . 5 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → seq1( · , (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1)))):ℕ⟶ℝ)
3332ffvelrnda 6956 . . . 4 ((𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) ∧ 𝑛 ∈ ℕ) → (seq1( · , (𝑚 ∈ ℕ ↦ ((((𝑚 + 1) / 𝑚)↑𝑐𝐴) / ((𝐴 / 𝑚) + 1))))‘𝑛) ∈ ℝ)
349, 10, 12, 33climrecl 15288 . . 3 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → ((Γ‘𝐴) · 𝐴) ∈ ℝ)
3534, 1, 7redivcld 11801 . 2 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (((Γ‘𝐴) · 𝐴) / 𝐴) ∈ ℝ)
368, 35eqeltrrd 2842 1 (𝐴 ∈ (ℝ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2110  cdif 3889  cmpt 5162  cfv 6431  (class class class)co 7269  cc 10868  cr 10869  1c1 10871   + caddc 10873   · cmul 10875   / cdiv 11630  cn 11971  cz 12317  seqcseq 13717  𝑐ccxp 25707  Γcgam 26162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9375  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948  ax-addf 10949  ax-mulf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-oadd 8290  df-er 8479  df-map 8598  df-pm 8599  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fsupp 9105  df-fi 9146  df-sup 9177  df-inf 9178  df-oi 9245  df-dju 9658  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-q 12686  df-rp 12728  df-xneg 12845  df-xadd 12846  df-xmul 12847  df-ioo 13080  df-ioc 13081  df-ico 13082  df-icc 13083  df-fz 13237  df-fzo 13380  df-fl 13508  df-mod 13586  df-seq 13718  df-exp 13779  df-fac 13984  df-bc 14013  df-hash 14041  df-shft 14774  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-limsup 15176  df-clim 15193  df-rlim 15194  df-sum 15394  df-ef 15773  df-sin 15775  df-cos 15776  df-tan 15777  df-pi 15778  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-starv 16973  df-sca 16974  df-vsca 16975  df-ip 16976  df-tset 16977  df-ple 16978  df-ds 16980  df-unif 16981  df-hom 16982  df-cco 16983  df-rest 17129  df-topn 17130  df-0g 17148  df-gsum 17149  df-topgen 17150  df-pt 17151  df-prds 17154  df-xrs 17209  df-qtop 17214  df-imas 17215  df-xps 17217  df-mre 17291  df-mrc 17292  df-acs 17294  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-submnd 18427  df-mulg 18697  df-cntz 18919  df-cmn 19384  df-psmet 20585  df-xmet 20586  df-met 20587  df-bl 20588  df-mopn 20589  df-fbas 20590  df-fg 20591  df-cnfld 20594  df-top 22039  df-topon 22056  df-topsp 22078  df-bases 22092  df-cld 22166  df-ntr 22167  df-cls 22168  df-nei 22245  df-lp 22283  df-perf 22284  df-cn 22374  df-cnp 22375  df-haus 22462  df-cmp 22534  df-tx 22709  df-hmeo 22902  df-fil 22993  df-fm 23085  df-flim 23086  df-flf 23087  df-xms 23469  df-ms 23470  df-tms 23471  df-cncf 24037  df-limc 25026  df-dv 25027  df-ulm 25532  df-log 25708  df-cxp 25709  df-lgam 26164  df-gam 26165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator