![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > regamcl | Structured version Visualization version GIF version |
Description: The Gamma function is real for real input. (Contributed by Mario Carneiro, 9-Jul-2017.) |
Ref | Expression |
---|---|
regamcl | β’ (π΄ β (β β (β€ β β)) β (Ξβπ΄) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4126 | . . . . . 6 β’ (π΄ β (β β (β€ β β)) β π΄ β β) | |
2 | 1 | recnd 11246 | . . . . 5 β’ (π΄ β (β β (β€ β β)) β π΄ β β) |
3 | eldifn 4127 | . . . . 5 β’ (π΄ β (β β (β€ β β)) β Β¬ π΄ β (β€ β β)) | |
4 | 2, 3 | eldifd 3959 | . . . 4 β’ (π΄ β (β β (β€ β β)) β π΄ β (β β (β€ β β))) |
5 | gamcl 26772 | . . . 4 β’ (π΄ β (β β (β€ β β)) β (Ξβπ΄) β β) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π΄ β (β β (β€ β β)) β (Ξβπ΄) β β) |
7 | 4 | dmgmn0 26754 | . . 3 β’ (π΄ β (β β (β€ β β)) β π΄ β 0) |
8 | 6, 2, 7 | divcan4d 12000 | . 2 β’ (π΄ β (β β (β€ β β)) β (((Ξβπ΄) Β· π΄) / π΄) = (Ξβπ΄)) |
9 | nnuz 12869 | . . . 4 β’ β = (β€β₯β1) | |
10 | 1zzd 12597 | . . . 4 β’ (π΄ β (β β (β€ β β)) β 1 β β€) | |
11 | eqid 2732 | . . . . 5 β’ (π β β β¦ ((((π + 1) / π)βππ΄) / ((π΄ / π) + 1))) = (π β β β¦ ((((π + 1) / π)βππ΄) / ((π΄ / π) + 1))) | |
12 | 11, 4 | gamcvg2 26788 | . . . 4 β’ (π΄ β (β β (β€ β β)) β seq1( Β· , (π β β β¦ ((((π + 1) / π)βππ΄) / ((π΄ / π) + 1)))) β ((Ξβπ΄) Β· π΄)) |
13 | simpr 485 | . . . . . . . . . . . . . 14 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β π β β) | |
14 | 13 | peano2nnd 12233 | . . . . . . . . . . . . 13 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β (π + 1) β β) |
15 | 14 | nnrpd 13018 | . . . . . . . . . . . 12 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β (π + 1) β β+) |
16 | 13 | nnrpd 13018 | . . . . . . . . . . . 12 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β π β β+) |
17 | 15, 16 | rpdivcld 13037 | . . . . . . . . . . 11 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β ((π + 1) / π) β β+) |
18 | 17 | rpred 13020 | . . . . . . . . . 10 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β ((π + 1) / π) β β) |
19 | 17 | rpge0d 13024 | . . . . . . . . . 10 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β 0 β€ ((π + 1) / π)) |
20 | 1 | adantr 481 | . . . . . . . . . 10 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β π΄ β β) |
21 | 18, 19, 20 | recxpcld 26455 | . . . . . . . . 9 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β (((π + 1) / π)βππ΄) β β) |
22 | 20, 13 | nndivred 12270 | . . . . . . . . . 10 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β (π΄ / π) β β) |
23 | 1red 11219 | . . . . . . . . . 10 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β 1 β β) | |
24 | 22, 23 | readdcld 11247 | . . . . . . . . 9 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β ((π΄ / π) + 1) β β) |
25 | 4 | adantr 481 | . . . . . . . . . 10 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β π΄ β (β β (β€ β β))) |
26 | 25, 13 | dmgmdivn0 26756 | . . . . . . . . 9 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β ((π΄ / π) + 1) β 0) |
27 | 21, 24, 26 | redivcld 12046 | . . . . . . . 8 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β ((((π + 1) / π)βππ΄) / ((π΄ / π) + 1)) β β) |
28 | 27 | fmpttd 7116 | . . . . . . 7 β’ (π΄ β (β β (β€ β β)) β (π β β β¦ ((((π + 1) / π)βππ΄) / ((π΄ / π) + 1))):ββΆβ) |
29 | 28 | ffvelcdmda 7086 | . . . . . 6 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β ((π β β β¦ ((((π + 1) / π)βππ΄) / ((π΄ / π) + 1)))βπ) β β) |
30 | remulcl 11197 | . . . . . . 7 β’ ((π β β β§ π₯ β β) β (π Β· π₯) β β) | |
31 | 30 | adantl 482 | . . . . . 6 β’ ((π΄ β (β β (β€ β β)) β§ (π β β β§ π₯ β β)) β (π Β· π₯) β β) |
32 | 9, 10, 29, 31 | seqf 13993 | . . . . 5 β’ (π΄ β (β β (β€ β β)) β seq1( Β· , (π β β β¦ ((((π + 1) / π)βππ΄) / ((π΄ / π) + 1)))):ββΆβ) |
33 | 32 | ffvelcdmda 7086 | . . . 4 β’ ((π΄ β (β β (β€ β β)) β§ π β β) β (seq1( Β· , (π β β β¦ ((((π + 1) / π)βππ΄) / ((π΄ / π) + 1))))βπ) β β) |
34 | 9, 10, 12, 33 | climrecl 15531 | . . 3 β’ (π΄ β (β β (β€ β β)) β ((Ξβπ΄) Β· π΄) β β) |
35 | 34, 1, 7 | redivcld 12046 | . 2 β’ (π΄ β (β β (β€ β β)) β (((Ξβπ΄) Β· π΄) / π΄) β β) |
36 | 8, 35 | eqeltrrd 2834 | 1 β’ (π΄ β (β β (β€ β β)) β (Ξβπ΄) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 β cdif 3945 β¦ cmpt 5231 βcfv 6543 (class class class)co 7411 βcc 11110 βcr 11111 1c1 11113 + caddc 11115 Β· cmul 11117 / cdiv 11875 βcn 12216 β€cz 12562 seqcseq 13970 βπccxp 26288 Ξcgam 26745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ioc 13333 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-mod 13839 df-seq 13971 df-exp 14032 df-fac 14238 df-bc 14267 df-hash 14295 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-ef 16015 df-sin 16017 df-cos 16018 df-tan 16019 df-pi 16020 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-perf 22861 df-cn 22951 df-cnp 22952 df-haus 23039 df-cmp 23111 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cncf 24618 df-limc 25607 df-dv 25608 df-ulm 26113 df-log 26289 df-cxp 26290 df-lgam 26747 df-gam 26748 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |