Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsexpb | Structured version Visualization version GIF version |
Description: dvdssq 16148 generalized to positive integer exponents. (Contributed by SN, 15-Sep-2024.) |
Ref | Expression |
---|---|
dvdsexpb | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0abscl 14900 | . . . 4 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | |
2 | nn0abscl 14900 | . . . 4 ⊢ (𝐵 ∈ ℤ → (abs‘𝐵) ∈ ℕ0) | |
3 | dvdsexpnn0 40077 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℕ0 ∧ (abs‘𝐵) ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((abs‘𝐴) ∥ (abs‘𝐵) ↔ ((abs‘𝐴)↑𝑁) ∥ ((abs‘𝐵)↑𝑁))) | |
4 | 1, 2, 3 | syl3an12 39926 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((abs‘𝐴) ∥ (abs‘𝐵) ↔ ((abs‘𝐴)↑𝑁) ∥ ((abs‘𝐵)↑𝑁))) |
5 | simp1 1138 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ) | |
6 | 5 | zcnd 12307 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ) |
7 | simp3 1140 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
8 | 7 | nnnn0d 12174 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
9 | 6, 8 | absexpd 15040 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
10 | simp2 1139 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ) | |
11 | 10 | zcnd 12307 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℂ) |
12 | 11, 8 | absexpd 15040 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (abs‘(𝐵↑𝑁)) = ((abs‘𝐵)↑𝑁)) |
13 | 9, 12 | breq12d 5080 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((abs‘(𝐴↑𝑁)) ∥ (abs‘(𝐵↑𝑁)) ↔ ((abs‘𝐴)↑𝑁) ∥ ((abs‘𝐵)↑𝑁))) |
14 | 4, 13 | bitr4d 285 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((abs‘𝐴) ∥ (abs‘𝐵) ↔ (abs‘(𝐴↑𝑁)) ∥ (abs‘(𝐵↑𝑁)))) |
15 | absdvdsabsb 40063 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ 𝐵 ↔ (abs‘𝐴) ∥ (abs‘𝐵))) | |
16 | 15 | 3adant3 1134 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (abs‘𝐴) ∥ (abs‘𝐵))) |
17 | 5, 8 | zexpcld 40057 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) ∈ ℤ) |
18 | 10, 8 | zexpcld 40057 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵↑𝑁) ∈ ℤ) |
19 | absdvdsabsb 40063 | . . 3 ⊢ (((𝐴↑𝑁) ∈ ℤ ∧ (𝐵↑𝑁) ∈ ℤ) → ((𝐴↑𝑁) ∥ (𝐵↑𝑁) ↔ (abs‘(𝐴↑𝑁)) ∥ (abs‘(𝐵↑𝑁)))) | |
20 | 17, 18, 19 | syl2anc 587 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) ∥ (𝐵↑𝑁) ↔ (abs‘(𝐴↑𝑁)) ∥ (abs‘(𝐵↑𝑁)))) |
21 | 14, 16, 20 | 3bitr4d 314 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∥ 𝐵 ↔ (𝐴↑𝑁) ∥ (𝐵↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 ∈ wcel 2111 class class class wbr 5067 ‘cfv 6397 (class class class)co 7231 ℕcn 11854 ℕ0cn0 12114 ℤcz 12200 ↑cexp 13659 abscabs 14821 ∥ cdvds 15839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-pre-sup 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-sup 9082 df-inf 9083 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-div 11514 df-nn 11855 df-2 11917 df-3 11918 df-n0 12115 df-z 12201 df-uz 12463 df-rp 12611 df-fl 13391 df-mod 13467 df-seq 13599 df-exp 13660 df-cj 14686 df-re 14687 df-im 14688 df-sqrt 14822 df-abs 14823 df-dvds 15840 df-gcd 16078 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |