MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0abscl Structured version   Visualization version   GIF version

Theorem nn0abscl 15214
Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
nn0abscl (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)

Proof of Theorem nn0abscl
StepHypRef Expression
1 zre 12467 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 absz 15213 . . . 4 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (abs‘𝐴) ∈ ℤ))
31, 2syl 17 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℤ ↔ (abs‘𝐴) ∈ ℤ))
43ibi 267 . 2 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ)
5 zcn 12468 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
6 absge0 15189 . . 3 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
75, 6syl 17 . 2 (𝐴 ∈ ℤ → 0 ≤ (abs‘𝐴))
8 elnn0z 12476 . 2 ((abs‘𝐴) ∈ ℕ0 ↔ ((abs‘𝐴) ∈ ℤ ∧ 0 ≤ (abs‘𝐴)))
94, 7, 8sylanbrc 583 1 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111   class class class wbr 5086  cfv 6476  cc 10999  cr 11000  0cc0 11001  cle 11142  0cn0 12376  cz 12463  abscabs 15136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138
This theorem is referenced by:  zabscl  15215  zabs0b  15216  absrdbnd  15244  divalglem0  16299  divalglem2  16301  divalglem5  16303  gcdcllem1  16405  absmulgcd  16455  zexpgcd  16471  lcmgcd  16513  lcmgcdeq  16518  mulgcddvds  16561  sqnprm  16608  zgcdsq  16659  4sqlem11  16862  odnncl  19452  gexdvds  19491  prmirredlem  21404  zdis  24727  aannenlem2  26259  efif1olem4  26476  lgsabs1  27269  2sqblem  27364  rplogsumlem2  27418  dvdsexpb  42368  pellexlem5  42866  jm2.19  43026  etransclem44  46316  etransc  46321
  Copyright terms: Public domain W3C validator