MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsdm Structured version   Visualization version   GIF version

Theorem efgsdm 19336
Description: Elementhood in the domain of 𝑆, the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsdm (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
Distinct variable groups:   𝑦,𝑧   𝑖,𝐹   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀   𝑖,𝑘,𝑇,𝑚,𝑡,𝑥   𝑦,𝑖,𝑧,𝑊   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑖,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑖   𝑖,𝐼,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑖,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsdm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6773 . . . . 5 (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0))
21eleq1d 2823 . . . 4 (𝑓 = 𝐹 → ((𝑓‘0) ∈ 𝐷 ↔ (𝐹‘0) ∈ 𝐷))
3 fveq2 6774 . . . . . 6 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
43oveq2d 7291 . . . . 5 (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
5 fveq1 6773 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑖) = (𝐹𝑖))
6 fveq1 6773 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
76fveq2d 6778 . . . . . . 7 (𝑓 = 𝐹 → (𝑇‘(𝑓‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1))))
87rneqd 5847 . . . . . 6 (𝑓 = 𝐹 → ran (𝑇‘(𝑓‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1))))
95, 8eleq12d 2833 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
104, 9raleqbidv 3336 . . . 4 (𝑓 = 𝐹 → (∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
112, 10anbi12d 631 . . 3 (𝑓 = 𝐹 → (((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))) ↔ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
12 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
13 efgval.r . . . . . 6 = ( ~FG𝐼)
14 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
15 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
16 efgred.d . . . . . 6 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
17 efgred.s . . . . . 6 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
1812, 13, 14, 15, 16, 17efgsf 19335 . . . . 5 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
1918fdmi 6612 . . . 4 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
20 fveq1 6773 . . . . . . 7 (𝑡 = 𝑓 → (𝑡‘0) = (𝑓‘0))
2120eleq1d 2823 . . . . . 6 (𝑡 = 𝑓 → ((𝑡‘0) ∈ 𝐷 ↔ (𝑓‘0) ∈ 𝐷))
22 fveq2 6774 . . . . . . . . 9 (𝑘 = 𝑖 → (𝑡𝑘) = (𝑡𝑖))
23 fvoveq1 7298 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑡‘(𝑘 − 1)) = (𝑡‘(𝑖 − 1)))
2423fveq2d 6778 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑇‘(𝑡‘(𝑘 − 1))) = (𝑇‘(𝑡‘(𝑖 − 1))))
2524rneqd 5847 . . . . . . . . 9 (𝑘 = 𝑖 → ran (𝑇‘(𝑡‘(𝑘 − 1))) = ran (𝑇‘(𝑡‘(𝑖 − 1))))
2622, 25eleq12d 2833 . . . . . . . 8 (𝑘 = 𝑖 → ((𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ (𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1)))))
2726cbvralvw 3383 . . . . . . 7 (∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑡))(𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))))
28 fveq2 6774 . . . . . . . . 9 (𝑡 = 𝑓 → (♯‘𝑡) = (♯‘𝑓))
2928oveq2d 7291 . . . . . . . 8 (𝑡 = 𝑓 → (1..^(♯‘𝑡)) = (1..^(♯‘𝑓)))
30 fveq1 6773 . . . . . . . . 9 (𝑡 = 𝑓 → (𝑡𝑖) = (𝑓𝑖))
31 fveq1 6773 . . . . . . . . . . 11 (𝑡 = 𝑓 → (𝑡‘(𝑖 − 1)) = (𝑓‘(𝑖 − 1)))
3231fveq2d 6778 . . . . . . . . . 10 (𝑡 = 𝑓 → (𝑇‘(𝑡‘(𝑖 − 1))) = (𝑇‘(𝑓‘(𝑖 − 1))))
3332rneqd 5847 . . . . . . . . 9 (𝑡 = 𝑓 → ran (𝑇‘(𝑡‘(𝑖 − 1))) = ran (𝑇‘(𝑓‘(𝑖 − 1))))
3430, 33eleq12d 2833 . . . . . . . 8 (𝑡 = 𝑓 → ((𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))) ↔ (𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3529, 34raleqbidv 3336 . . . . . . 7 (𝑡 = 𝑓 → (∀𝑖 ∈ (1..^(♯‘𝑡))(𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3627, 35bitrid 282 . . . . . 6 (𝑡 = 𝑓 → (∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3721, 36anbi12d 631 . . . . 5 (𝑡 = 𝑓 → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) ↔ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))))
3837cbvrabv 3426 . . . 4 {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} = {𝑓 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))}
3919, 38eqtri 2766 . . 3 dom 𝑆 = {𝑓 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))}
4011, 39elrab2 3627 . 2 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
41 3anass 1094 . 2 ((𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
4240, 41bitr4i 277 1 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  c0 4256  {csn 4561  cop 4567  cotp 4569   ciun 4924  cmpt 5157   I cid 5488   × cxp 5587  dom cdm 5589  ran crn 5590  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291  0cc0 10871  1c1 10872  cmin 11205  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   splice csplice 14462  ⟨“cs2 14554   ~FG cefg 19312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218
This theorem is referenced by:  efgsdmi  19338  efgsrel  19340  efgs1  19341  efgs1b  19342  efgsp1  19343  efgsres  19344  efgsfo  19345  efgredlema  19346  efgredlemf  19347  efgredlemd  19350  efgredlemc  19351  efgredlem  19353  efgrelexlemb  19356  efgredeu  19358  efgred2  19359
  Copyright terms: Public domain W3C validator