Step | Hyp | Ref
| Expression |
1 | | fveq1 6755 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) |
2 | 1 | eleq1d 2823 |
. . . 4
⊢ (𝑓 = 𝐹 → ((𝑓‘0) ∈ 𝐷 ↔ (𝐹‘0) ∈ 𝐷)) |
3 | | fveq2 6756 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) |
4 | 3 | oveq2d 7271 |
. . . . 5
⊢ (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹))) |
5 | | fveq1 6755 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑖) = (𝐹‘𝑖)) |
6 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) |
7 | 6 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑇‘(𝑓‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1)))) |
8 | 7 | rneqd 5836 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ran (𝑇‘(𝑓‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
9 | 5, 8 | eleq12d 2833 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
10 | 4, 9 | raleqbidv 3327 |
. . . 4
⊢ (𝑓 = 𝐹 → (∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))) ↔ ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
11 | 2, 10 | anbi12d 630 |
. . 3
⊢ (𝑓 = 𝐹 → (((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))) ↔ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))) |
12 | | efgval.w |
. . . . . 6
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
13 | | efgval.r |
. . . . . 6
⊢ ∼ = (
~FG ‘𝐼) |
14 | | efgval2.m |
. . . . . 6
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
15 | | efgval2.t |
. . . . . 6
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
16 | | efgred.d |
. . . . . 6
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
17 | | efgred.s |
. . . . . 6
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
18 | 12, 13, 14, 15, 16, 17 | efgsf 19250 |
. . . . 5
⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 |
19 | 18 | fdmi 6596 |
. . . 4
⊢ dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} |
20 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑡 = 𝑓 → (𝑡‘0) = (𝑓‘0)) |
21 | 20 | eleq1d 2823 |
. . . . . 6
⊢ (𝑡 = 𝑓 → ((𝑡‘0) ∈ 𝐷 ↔ (𝑓‘0) ∈ 𝐷)) |
22 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → (𝑡‘𝑘) = (𝑡‘𝑖)) |
23 | | fvoveq1 7278 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → (𝑡‘(𝑘 − 1)) = (𝑡‘(𝑖 − 1))) |
24 | 23 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → (𝑇‘(𝑡‘(𝑘 − 1))) = (𝑇‘(𝑡‘(𝑖 − 1)))) |
25 | 24 | rneqd 5836 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → ran (𝑇‘(𝑡‘(𝑘 − 1))) = ran (𝑇‘(𝑡‘(𝑖 − 1)))) |
26 | 22, 25 | eleq12d 2833 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → ((𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ (𝑡‘𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))))) |
27 | 26 | cbvralvw 3372 |
. . . . . . 7
⊢
(∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ ∀𝑖 ∈
(1..^(♯‘𝑡))(𝑡‘𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1)))) |
28 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑡 = 𝑓 → (♯‘𝑡) = (♯‘𝑓)) |
29 | 28 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑡 = 𝑓 → (1..^(♯‘𝑡)) = (1..^(♯‘𝑓))) |
30 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑡 = 𝑓 → (𝑡‘𝑖) = (𝑓‘𝑖)) |
31 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑓 → (𝑡‘(𝑖 − 1)) = (𝑓‘(𝑖 − 1))) |
32 | 31 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑓 → (𝑇‘(𝑡‘(𝑖 − 1))) = (𝑇‘(𝑓‘(𝑖 − 1)))) |
33 | 32 | rneqd 5836 |
. . . . . . . . 9
⊢ (𝑡 = 𝑓 → ran (𝑇‘(𝑡‘(𝑖 − 1))) = ran (𝑇‘(𝑓‘(𝑖 − 1)))) |
34 | 30, 33 | eleq12d 2833 |
. . . . . . . 8
⊢ (𝑡 = 𝑓 → ((𝑡‘𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))) ↔ (𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))) |
35 | 29, 34 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑡 = 𝑓 → (∀𝑖 ∈ (1..^(♯‘𝑡))(𝑡‘𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))) ↔ ∀𝑖 ∈
(1..^(♯‘𝑓))(𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))) |
36 | 27, 35 | syl5bb 282 |
. . . . . 6
⊢ (𝑡 = 𝑓 → (∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ ∀𝑖 ∈
(1..^(♯‘𝑓))(𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))) |
37 | 21, 36 | anbi12d 630 |
. . . . 5
⊢ (𝑡 = 𝑓 → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) ↔ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))) |
38 | 37 | cbvrabv 3416 |
. . . 4
⊢ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} = {𝑓 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘𝑓))(𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))} |
39 | 19, 38 | eqtri 2766 |
. . 3
⊢ dom 𝑆 = {𝑓 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘𝑓))(𝑓‘𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))} |
40 | 11, 39 | elrab2 3620 |
. 2
⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))) |
41 | | 3anass 1093 |
. 2
⊢ ((𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))) |
42 | 40, 41 | bitr4i 277 |
1
⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |