MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsdm Structured version   Visualization version   GIF version

Theorem efgsdm 19251
Description: Elementhood in the domain of 𝑆, the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsdm (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
Distinct variable groups:   𝑦,𝑧   𝑖,𝐹   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀   𝑖,𝑘,𝑇,𝑚,𝑡,𝑥   𝑦,𝑖,𝑧,𝑊   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑖,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑖   𝑖,𝐼,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑖,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsdm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6755 . . . . 5 (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0))
21eleq1d 2823 . . . 4 (𝑓 = 𝐹 → ((𝑓‘0) ∈ 𝐷 ↔ (𝐹‘0) ∈ 𝐷))
3 fveq2 6756 . . . . . 6 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
43oveq2d 7271 . . . . 5 (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
5 fveq1 6755 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑖) = (𝐹𝑖))
6 fveq1 6755 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
76fveq2d 6760 . . . . . . 7 (𝑓 = 𝐹 → (𝑇‘(𝑓‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1))))
87rneqd 5836 . . . . . 6 (𝑓 = 𝐹 → ran (𝑇‘(𝑓‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1))))
95, 8eleq12d 2833 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
104, 9raleqbidv 3327 . . . 4 (𝑓 = 𝐹 → (∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
112, 10anbi12d 630 . . 3 (𝑓 = 𝐹 → (((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))) ↔ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
12 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
13 efgval.r . . . . . 6 = ( ~FG𝐼)
14 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
15 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
16 efgred.d . . . . . 6 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
17 efgred.s . . . . . 6 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
1812, 13, 14, 15, 16, 17efgsf 19250 . . . . 5 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
1918fdmi 6596 . . . 4 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
20 fveq1 6755 . . . . . . 7 (𝑡 = 𝑓 → (𝑡‘0) = (𝑓‘0))
2120eleq1d 2823 . . . . . 6 (𝑡 = 𝑓 → ((𝑡‘0) ∈ 𝐷 ↔ (𝑓‘0) ∈ 𝐷))
22 fveq2 6756 . . . . . . . . 9 (𝑘 = 𝑖 → (𝑡𝑘) = (𝑡𝑖))
23 fvoveq1 7278 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑡‘(𝑘 − 1)) = (𝑡‘(𝑖 − 1)))
2423fveq2d 6760 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑇‘(𝑡‘(𝑘 − 1))) = (𝑇‘(𝑡‘(𝑖 − 1))))
2524rneqd 5836 . . . . . . . . 9 (𝑘 = 𝑖 → ran (𝑇‘(𝑡‘(𝑘 − 1))) = ran (𝑇‘(𝑡‘(𝑖 − 1))))
2622, 25eleq12d 2833 . . . . . . . 8 (𝑘 = 𝑖 → ((𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ (𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1)))))
2726cbvralvw 3372 . . . . . . 7 (∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑡))(𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))))
28 fveq2 6756 . . . . . . . . 9 (𝑡 = 𝑓 → (♯‘𝑡) = (♯‘𝑓))
2928oveq2d 7271 . . . . . . . 8 (𝑡 = 𝑓 → (1..^(♯‘𝑡)) = (1..^(♯‘𝑓)))
30 fveq1 6755 . . . . . . . . 9 (𝑡 = 𝑓 → (𝑡𝑖) = (𝑓𝑖))
31 fveq1 6755 . . . . . . . . . . 11 (𝑡 = 𝑓 → (𝑡‘(𝑖 − 1)) = (𝑓‘(𝑖 − 1)))
3231fveq2d 6760 . . . . . . . . . 10 (𝑡 = 𝑓 → (𝑇‘(𝑡‘(𝑖 − 1))) = (𝑇‘(𝑓‘(𝑖 − 1))))
3332rneqd 5836 . . . . . . . . 9 (𝑡 = 𝑓 → ran (𝑇‘(𝑡‘(𝑖 − 1))) = ran (𝑇‘(𝑓‘(𝑖 − 1))))
3430, 33eleq12d 2833 . . . . . . . 8 (𝑡 = 𝑓 → ((𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))) ↔ (𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3529, 34raleqbidv 3327 . . . . . . 7 (𝑡 = 𝑓 → (∀𝑖 ∈ (1..^(♯‘𝑡))(𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3627, 35syl5bb 282 . . . . . 6 (𝑡 = 𝑓 → (∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3721, 36anbi12d 630 . . . . 5 (𝑡 = 𝑓 → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) ↔ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))))
3837cbvrabv 3416 . . . 4 {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} = {𝑓 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))}
3919, 38eqtri 2766 . . 3 dom 𝑆 = {𝑓 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))}
4011, 39elrab2 3620 . 2 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
41 3anass 1093 . 2 ((𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
4240, 41bitr4i 277 1 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cdif 3880  c0 4253  {csn 4558  cop 4564  cotp 4566   ciun 4921  cmpt 5153   I cid 5479   × cxp 5578  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  1oc1o 8260  2oc2o 8261  0cc0 10802  1c1 10803  cmin 11135  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   splice csplice 14390  ⟨“cs2 14482   ~FG cefg 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146
This theorem is referenced by:  efgsdmi  19253  efgsrel  19255  efgs1  19256  efgs1b  19257  efgsp1  19258  efgsres  19259  efgsfo  19260  efgredlema  19261  efgredlemf  19262  efgredlemd  19265  efgredlemc  19266  efgredlem  19268  efgrelexlemb  19271  efgredeu  19273  efgred2  19274
  Copyright terms: Public domain W3C validator