MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsdm Structured version   Visualization version   GIF version

Theorem efgsdm 19697
Description: Elementhood in the domain of 𝑆, the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsdm (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
Distinct variable groups:   𝑦,𝑧   𝑖,𝐹   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧   𝑖,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀   𝑖,𝑘,𝑇,𝑚,𝑡,𝑥   𝑦,𝑖,𝑧,𝑊   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑖,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑖   𝑖,𝐼,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑖,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsdm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6895 . . . . 5 (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0))
21eleq1d 2810 . . . 4 (𝑓 = 𝐹 → ((𝑓‘0) ∈ 𝐷 ↔ (𝐹‘0) ∈ 𝐷))
3 fveq2 6896 . . . . . 6 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
43oveq2d 7435 . . . . 5 (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
5 fveq1 6895 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑖) = (𝐹𝑖))
6 fveq1 6895 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
76fveq2d 6900 . . . . . . 7 (𝑓 = 𝐹 → (𝑇‘(𝑓‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1))))
87rneqd 5940 . . . . . 6 (𝑓 = 𝐹 → ran (𝑇‘(𝑓‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1))))
95, 8eleq12d 2819 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
104, 9raleqbidv 3329 . . . 4 (𝑓 = 𝐹 → (∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
112, 10anbi12d 630 . . 3 (𝑓 = 𝐹 → (((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))) ↔ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
12 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
13 efgval.r . . . . . 6 = ( ~FG𝐼)
14 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
15 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
16 efgred.d . . . . . 6 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
17 efgred.s . . . . . 6 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
1812, 13, 14, 15, 16, 17efgsf 19696 . . . . 5 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
1918fdmi 6734 . . . 4 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
20 fveq1 6895 . . . . . . 7 (𝑡 = 𝑓 → (𝑡‘0) = (𝑓‘0))
2120eleq1d 2810 . . . . . 6 (𝑡 = 𝑓 → ((𝑡‘0) ∈ 𝐷 ↔ (𝑓‘0) ∈ 𝐷))
22 fveq2 6896 . . . . . . . . 9 (𝑘 = 𝑖 → (𝑡𝑘) = (𝑡𝑖))
23 fvoveq1 7442 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑡‘(𝑘 − 1)) = (𝑡‘(𝑖 − 1)))
2423fveq2d 6900 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑇‘(𝑡‘(𝑘 − 1))) = (𝑇‘(𝑡‘(𝑖 − 1))))
2524rneqd 5940 . . . . . . . . 9 (𝑘 = 𝑖 → ran (𝑇‘(𝑡‘(𝑘 − 1))) = ran (𝑇‘(𝑡‘(𝑖 − 1))))
2622, 25eleq12d 2819 . . . . . . . 8 (𝑘 = 𝑖 → ((𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ (𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1)))))
2726cbvralvw 3224 . . . . . . 7 (∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑡))(𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))))
28 fveq2 6896 . . . . . . . . 9 (𝑡 = 𝑓 → (♯‘𝑡) = (♯‘𝑓))
2928oveq2d 7435 . . . . . . . 8 (𝑡 = 𝑓 → (1..^(♯‘𝑡)) = (1..^(♯‘𝑓)))
30 fveq1 6895 . . . . . . . . 9 (𝑡 = 𝑓 → (𝑡𝑖) = (𝑓𝑖))
31 fveq1 6895 . . . . . . . . . . 11 (𝑡 = 𝑓 → (𝑡‘(𝑖 − 1)) = (𝑓‘(𝑖 − 1)))
3231fveq2d 6900 . . . . . . . . . 10 (𝑡 = 𝑓 → (𝑇‘(𝑡‘(𝑖 − 1))) = (𝑇‘(𝑓‘(𝑖 − 1))))
3332rneqd 5940 . . . . . . . . 9 (𝑡 = 𝑓 → ran (𝑇‘(𝑡‘(𝑖 − 1))) = ran (𝑇‘(𝑓‘(𝑖 − 1))))
3430, 33eleq12d 2819 . . . . . . . 8 (𝑡 = 𝑓 → ((𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))) ↔ (𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3529, 34raleqbidv 3329 . . . . . . 7 (𝑡 = 𝑓 → (∀𝑖 ∈ (1..^(♯‘𝑡))(𝑡𝑖) ∈ ran (𝑇‘(𝑡‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3627, 35bitrid 282 . . . . . 6 (𝑡 = 𝑓 → (∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1)))))
3721, 36anbi12d 630 . . . . 5 (𝑡 = 𝑓 → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) ↔ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))))
3837cbvrabv 3429 . . . 4 {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} = {𝑓 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))}
3919, 38eqtri 2753 . . 3 dom 𝑆 = {𝑓 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑓‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑓))(𝑓𝑖) ∈ ran (𝑇‘(𝑓‘(𝑖 − 1))))}
4011, 39elrab2 3682 . 2 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
41 3anass 1092 . 2 ((𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))))
4240, 41bitr4i 277 1 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  {crab 3418  cdif 3941  c0 4322  {csn 4630  cop 4636  cotp 4638   ciun 4997  cmpt 5232   I cid 5575   × cxp 5676  dom cdm 5678  ran crn 5679  cfv 6549  (class class class)co 7419  cmpo 7421  1oc1o 8480  2oc2o 8481  0cc0 11140  1c1 11141  cmin 11476  ...cfz 13519  ..^cfzo 13662  chash 14325  Word cword 14500   splice csplice 14735  ⟨“cs2 14828   ~FG cefg 19673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-hash 14326  df-word 14501
This theorem is referenced by:  efgsdmi  19699  efgsrel  19701  efgs1  19702  efgs1b  19703  efgsp1  19704  efgsres  19705  efgsfo  19706  efgredlema  19707  efgredlemf  19708  efgredlemd  19711  efgredlemc  19712  efgredlem  19714  efgrelexlemb  19717  efgredeu  19719  efgred2  19720
  Copyright terms: Public domain W3C validator