MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmopn2 Structured version   Visualization version   GIF version

Theorem elmopn2 24350
Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
elmopn2 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem elmopn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
21elmopn 24347 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴))))
3 ssel2 3932 . . . . . 6 ((𝐴𝑋𝑥𝐴) → 𝑥𝑋)
4 blssex 24332 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))
53, 4sylan2 593 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝑥𝐴)) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))
65anassrs 467 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))
76ralbidva 3150 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (∀𝑥𝐴𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))
87pm5.32da 579 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐴𝑋 ∧ ∀𝑥𝐴𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴)) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴)))
92, 8bitrd 279 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905  ran crn 5624  cfv 6486  (class class class)co 7353  +crp 12912  ∞Metcxmet 21265  ballcbl 21267  MetOpencmopn 21270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-n0 12404  df-z 12491  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-topgen 17366  df-psmet 21272  df-xmet 21273  df-bl 21275  df-mopn 21276  df-bases 22850
This theorem is referenced by:  metrest  24429  tgioo  24701  xrsmopn  24718  recld2  24720  tpr2rico  33898  dya2icoseg2  34265  opnrebl  36313  opnrebl2  36314
  Copyright terms: Public domain W3C validator