MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl2 Structured version   Visualization version   GIF version

Theorem cphsqrtcl2 25143
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsqrtcl2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)

Proof of Theorem cphsqrtcl2
StepHypRef Expression
1 sqrt0 15265 . . . . 5 (√‘0) = 0
2 fveq2 6881 . . . . 5 (𝐴 = 0 → (√‘𝐴) = (√‘0))
3 id 22 . . . . 5 (𝐴 = 0 → 𝐴 = 0)
41, 2, 33eqtr4a 2797 . . . 4 (𝐴 = 0 → (√‘𝐴) = 𝐴)
54adantl 481 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) = 𝐴)
6 simpl2 1193 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → 𝐴𝐾)
75, 6eqeltrd 2835 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) ∈ 𝐾)
8 simpl1 1192 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝑊 ∈ ℂPreHil)
9 cphsca.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
10 cphsca.k . . . . . . . 8 𝐾 = (Base‘𝐹)
119, 10cphsubrg 25137 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
128, 11syl 17 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
13 cnfldbas 21324 . . . . . . 7 ℂ = (Base‘ℂfld)
1413subrgss 20537 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
1512, 14syl 17 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ⊆ ℂ)
16 simpl2 1193 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴𝐾)
179, 10cphabscl 25142 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) ∈ 𝐾)
188, 16, 17syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ 𝐾)
1915, 16sseldd 3964 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
2019abscld 15460 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
2119absge0d 15468 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
229, 10cphsqrtcl 25141 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) ∈ 𝐾 ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (√‘(abs‘𝐴)) ∈ 𝐾)
238, 18, 20, 21, 22syl13anc 1374 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘(abs‘𝐴)) ∈ 𝐾)
24 cnfldadd 21326 . . . . . . . . 9 + = (+g‘ℂfld)
2524subrgacl 20548 . . . . . . . 8 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (abs‘𝐴) ∈ 𝐾𝐴𝐾) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
2612, 18, 16, 25syl3anc 1373 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
279, 10cphabscl 25142 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) + 𝐴) ∈ 𝐾) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
288, 26, 27syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
2915, 26sseldd 3964 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
30 simpl3 1194 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ -𝐴 ∈ ℝ+)
3120recnd 11268 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
3231, 19subnegd 11606 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
3332eqeq1d 2738 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
3419negcld 11586 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → -𝐴 ∈ ℂ)
3531, 34subeq0ad 11609 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
3633, 35bitr3d 281 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
37 absrpcl 15312 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
3819, 37sylancom 588 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
39 eleq1 2823 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ+ ↔ -𝐴 ∈ ℝ+))
4038, 39syl5ibcom 245 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) = -𝐴 → -𝐴 ∈ ℝ+))
4136, 40sylbid 240 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 → -𝐴 ∈ ℝ+))
4241necon3bd 2947 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ+ → ((abs‘𝐴) + 𝐴) ≠ 0))
4330, 42mpd 15 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ≠ 0)
4429, 43absne0d 15471 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
459, 10cphdivcl 25139 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (((abs‘𝐴) + 𝐴) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
468, 26, 28, 44, 45syl13anc 1374 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
47 cnfldmul 21328 . . . . . . 7 · = (.r‘ℂfld)
4847subrgmcl 20549 . . . . . 6 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (√‘(abs‘𝐴)) ∈ 𝐾 ∧ (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
4912, 23, 46, 48syl3anc 1373 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
5015, 49sseldd 3964 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
51 eqid 2736 . . . . . . 7 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5251sqreulem 15383 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5319, 43, 52syl2anc 584 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5453simp1d 1142 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴)
5553simp2d 1143 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
5653simp3d 1144 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)
57 df-nel 3038 . . . . 5 ((i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+ ↔ ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5856, 57sylib 218 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5950, 19, 54, 55, 58eqsqrtd 15391 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = (√‘𝐴))
6059, 49eqeltrrd 2836 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘𝐴) ∈ 𝐾)
617, 60pm2.61dane 3020 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wnel 3037  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  ici 11136   + caddc 11137   · cmul 11139  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  +crp 13013  cexp 14084  cre 15121  csqrt 15257  abscabs 15258  Basecbs 17233  Scalarcsca 17279  SubRingcsubrg 20534  fldccnfld 21320  ℂPreHilccph 25123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-subg 19111  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-drng 20696  df-staf 20804  df-srng 20805  df-lvec 21066  df-cnfld 21321  df-phl 21591  df-cph 25125
This theorem is referenced by:  cphsqrtcl3  25144
  Copyright terms: Public domain W3C validator