MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl2 Structured version   Visualization version   GIF version

Theorem cphsqrtcl2 25134
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsqrtcl2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)

Proof of Theorem cphsqrtcl2
StepHypRef Expression
1 sqrt0 15228 . . . . 5 (√‘0) = 0
2 fveq2 6902 . . . . 5 (𝐴 = 0 → (√‘𝐴) = (√‘0))
3 id 22 . . . . 5 (𝐴 = 0 → 𝐴 = 0)
41, 2, 33eqtr4a 2794 . . . 4 (𝐴 = 0 → (√‘𝐴) = 𝐴)
54adantl 480 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) = 𝐴)
6 simpl2 1189 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → 𝐴𝐾)
75, 6eqeltrd 2829 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) ∈ 𝐾)
8 simpl1 1188 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝑊 ∈ ℂPreHil)
9 cphsca.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
10 cphsca.k . . . . . . . 8 𝐾 = (Base‘𝐹)
119, 10cphsubrg 25128 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
128, 11syl 17 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
13 cnfldbas 21290 . . . . . . 7 ℂ = (Base‘ℂfld)
1413subrgss 20518 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
1512, 14syl 17 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ⊆ ℂ)
16 simpl2 1189 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴𝐾)
179, 10cphabscl 25133 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) ∈ 𝐾)
188, 16, 17syl2anc 582 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ 𝐾)
1915, 16sseldd 3983 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
2019abscld 15423 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
2119absge0d 15431 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
229, 10cphsqrtcl 25132 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) ∈ 𝐾 ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (√‘(abs‘𝐴)) ∈ 𝐾)
238, 18, 20, 21, 22syl13anc 1369 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘(abs‘𝐴)) ∈ 𝐾)
24 cnfldadd 21292 . . . . . . . . 9 + = (+g‘ℂfld)
2524subrgacl 20529 . . . . . . . 8 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (abs‘𝐴) ∈ 𝐾𝐴𝐾) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
2612, 18, 16, 25syl3anc 1368 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
279, 10cphabscl 25133 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) + 𝐴) ∈ 𝐾) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
288, 26, 27syl2anc 582 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
2915, 26sseldd 3983 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
30 simpl3 1190 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ -𝐴 ∈ ℝ+)
3120recnd 11280 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
3231, 19subnegd 11616 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
3332eqeq1d 2730 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
3419negcld 11596 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → -𝐴 ∈ ℂ)
3531, 34subeq0ad 11619 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
3633, 35bitr3d 280 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
37 absrpcl 15275 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
3819, 37sylancom 586 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
39 eleq1 2817 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ+ ↔ -𝐴 ∈ ℝ+))
4038, 39syl5ibcom 244 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) = -𝐴 → -𝐴 ∈ ℝ+))
4136, 40sylbid 239 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 → -𝐴 ∈ ℝ+))
4241necon3bd 2951 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ+ → ((abs‘𝐴) + 𝐴) ≠ 0))
4330, 42mpd 15 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ≠ 0)
4429, 43absne0d 15434 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
459, 10cphdivcl 25130 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (((abs‘𝐴) + 𝐴) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
468, 26, 28, 44, 45syl13anc 1369 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
47 cnfldmul 21294 . . . . . . 7 · = (.r‘ℂfld)
4847subrgmcl 20530 . . . . . 6 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (√‘(abs‘𝐴)) ∈ 𝐾 ∧ (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
4912, 23, 46, 48syl3anc 1368 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
5015, 49sseldd 3983 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
51 eqid 2728 . . . . . . 7 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5251sqreulem 15346 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5319, 43, 52syl2anc 582 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5453simp1d 1139 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴)
5553simp2d 1140 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
5653simp3d 1141 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)
57 df-nel 3044 . . . . 5 ((i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+ ↔ ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5856, 57sylib 217 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5950, 19, 54, 55, 58eqsqrtd 15354 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = (√‘𝐴))
6059, 49eqeltrrd 2830 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘𝐴) ∈ 𝐾)
617, 60pm2.61dane 3026 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wnel 3043  wss 3949   class class class wbr 5152  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146  ici 11148   + caddc 11149   · cmul 11151  cle 11287  cmin 11482  -cneg 11483   / cdiv 11909  2c2 12305  +crp 13014  cexp 14066  cre 15084  csqrt 15220  abscabs 15221  Basecbs 17187  Scalarcsca 17243  SubRingcsubrg 20513  fldccnfld 21286  ℂPreHilccph 25114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-rp 13015  df-ico 13370  df-fz 13525  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-grp 18900  df-minusg 18901  df-subg 19085  df-ghm 19175  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20280  df-dvdsr 20303  df-unit 20304  df-invr 20334  df-dvr 20347  df-rhm 20418  df-subrng 20490  df-subrg 20515  df-drng 20633  df-staf 20732  df-srng 20733  df-lvec 20995  df-cnfld 21287  df-phl 21565  df-cph 25116
This theorem is referenced by:  cphsqrtcl3  25135
  Copyright terms: Public domain W3C validator