MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl2 Structured version   Visualization version   GIF version

Theorem cphsqrtcl2 24350
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsqrtcl2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)

Proof of Theorem cphsqrtcl2
StepHypRef Expression
1 sqrt0 14953 . . . . 5 (√‘0) = 0
2 fveq2 6774 . . . . 5 (𝐴 = 0 → (√‘𝐴) = (√‘0))
3 id 22 . . . . 5 (𝐴 = 0 → 𝐴 = 0)
41, 2, 33eqtr4a 2804 . . . 4 (𝐴 = 0 → (√‘𝐴) = 𝐴)
54adantl 482 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) = 𝐴)
6 simpl2 1191 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → 𝐴𝐾)
75, 6eqeltrd 2839 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) ∈ 𝐾)
8 simpl1 1190 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝑊 ∈ ℂPreHil)
9 cphsca.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
10 cphsca.k . . . . . . . 8 𝐾 = (Base‘𝐹)
119, 10cphsubrg 24344 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
128, 11syl 17 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
13 cnfldbas 20601 . . . . . . 7 ℂ = (Base‘ℂfld)
1413subrgss 20025 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
1512, 14syl 17 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ⊆ ℂ)
16 simpl2 1191 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴𝐾)
179, 10cphabscl 24349 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) ∈ 𝐾)
188, 16, 17syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ 𝐾)
1915, 16sseldd 3922 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
2019abscld 15148 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
2119absge0d 15156 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
229, 10cphsqrtcl 24348 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) ∈ 𝐾 ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (√‘(abs‘𝐴)) ∈ 𝐾)
238, 18, 20, 21, 22syl13anc 1371 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘(abs‘𝐴)) ∈ 𝐾)
24 cnfldadd 20602 . . . . . . . . 9 + = (+g‘ℂfld)
2524subrgacl 20035 . . . . . . . 8 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (abs‘𝐴) ∈ 𝐾𝐴𝐾) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
2612, 18, 16, 25syl3anc 1370 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
279, 10cphabscl 24349 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) + 𝐴) ∈ 𝐾) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
288, 26, 27syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
2915, 26sseldd 3922 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
30 simpl3 1192 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ -𝐴 ∈ ℝ+)
3120recnd 11003 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
3231, 19subnegd 11339 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
3332eqeq1d 2740 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
3419negcld 11319 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → -𝐴 ∈ ℂ)
3531, 34subeq0ad 11342 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
3633, 35bitr3d 280 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
37 absrpcl 15000 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
3819, 37sylancom 588 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
39 eleq1 2826 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ+ ↔ -𝐴 ∈ ℝ+))
4038, 39syl5ibcom 244 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) = -𝐴 → -𝐴 ∈ ℝ+))
4136, 40sylbid 239 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 → -𝐴 ∈ ℝ+))
4241necon3bd 2957 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ+ → ((abs‘𝐴) + 𝐴) ≠ 0))
4330, 42mpd 15 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ≠ 0)
4429, 43absne0d 15159 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
459, 10cphdivcl 24346 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (((abs‘𝐴) + 𝐴) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
468, 26, 28, 44, 45syl13anc 1371 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
47 cnfldmul 20603 . . . . . . 7 · = (.r‘ℂfld)
4847subrgmcl 20036 . . . . . 6 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (√‘(abs‘𝐴)) ∈ 𝐾 ∧ (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
4912, 23, 46, 48syl3anc 1370 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
5015, 49sseldd 3922 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
51 eqid 2738 . . . . . . 7 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5251sqreulem 15071 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5319, 43, 52syl2anc 584 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5453simp1d 1141 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴)
5553simp2d 1142 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
5653simp3d 1143 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)
57 df-nel 3050 . . . . 5 ((i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+ ↔ ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5856, 57sylib 217 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5950, 19, 54, 55, 58eqsqrtd 15079 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = (√‘𝐴))
6059, 49eqeltrrd 2840 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘𝐴) ∈ 𝐾)
617, 60pm2.61dane 3032 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wnel 3049  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  ici 10873   + caddc 10874   · cmul 10876  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12730  cexp 13782  cre 14808  csqrt 14944  abscabs 14945  Basecbs 16912  Scalarcsca 16965  SubRingcsubrg 20020  fldccnfld 20597  ℂPreHilccph 24330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-subg 18752  df-ghm 18832  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-staf 20105  df-srng 20106  df-lvec 20365  df-cnfld 20598  df-phl 20831  df-cph 24332
This theorem is referenced by:  cphsqrtcl3  24351
  Copyright terms: Public domain W3C validator