MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl2 Structured version   Visualization version   GIF version

Theorem cphsqrtcl2 24348
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsqrtcl2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)

Proof of Theorem cphsqrtcl2
StepHypRef Expression
1 sqrt0 14951 . . . . 5 (√‘0) = 0
2 fveq2 6771 . . . . 5 (𝐴 = 0 → (√‘𝐴) = (√‘0))
3 id 22 . . . . 5 (𝐴 = 0 → 𝐴 = 0)
41, 2, 33eqtr4a 2806 . . . 4 (𝐴 = 0 → (√‘𝐴) = 𝐴)
54adantl 482 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) = 𝐴)
6 simpl2 1191 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → 𝐴𝐾)
75, 6eqeltrd 2841 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) ∈ 𝐾)
8 simpl1 1190 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝑊 ∈ ℂPreHil)
9 cphsca.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
10 cphsca.k . . . . . . . 8 𝐾 = (Base‘𝐹)
119, 10cphsubrg 24342 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
128, 11syl 17 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
13 cnfldbas 20599 . . . . . . 7 ℂ = (Base‘ℂfld)
1413subrgss 20023 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
1512, 14syl 17 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ⊆ ℂ)
16 simpl2 1191 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴𝐾)
179, 10cphabscl 24347 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) ∈ 𝐾)
188, 16, 17syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ 𝐾)
1915, 16sseldd 3927 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
2019abscld 15146 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
2119absge0d 15154 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
229, 10cphsqrtcl 24346 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) ∈ 𝐾 ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (√‘(abs‘𝐴)) ∈ 𝐾)
238, 18, 20, 21, 22syl13anc 1371 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘(abs‘𝐴)) ∈ 𝐾)
24 cnfldadd 20600 . . . . . . . . 9 + = (+g‘ℂfld)
2524subrgacl 20033 . . . . . . . 8 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (abs‘𝐴) ∈ 𝐾𝐴𝐾) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
2612, 18, 16, 25syl3anc 1370 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
279, 10cphabscl 24347 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) + 𝐴) ∈ 𝐾) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
288, 26, 27syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
2915, 26sseldd 3927 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
30 simpl3 1192 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ -𝐴 ∈ ℝ+)
3120recnd 11004 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
3231, 19subnegd 11339 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
3332eqeq1d 2742 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
3419negcld 11319 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → -𝐴 ∈ ℂ)
3531, 34subeq0ad 11342 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
3633, 35bitr3d 280 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
37 absrpcl 14998 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
3819, 37sylancom 588 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
39 eleq1 2828 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ+ ↔ -𝐴 ∈ ℝ+))
4038, 39syl5ibcom 244 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) = -𝐴 → -𝐴 ∈ ℝ+))
4136, 40sylbid 239 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 → -𝐴 ∈ ℝ+))
4241necon3bd 2959 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ+ → ((abs‘𝐴) + 𝐴) ≠ 0))
4330, 42mpd 15 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ≠ 0)
4429, 43absne0d 15157 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
459, 10cphdivcl 24344 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (((abs‘𝐴) + 𝐴) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
468, 26, 28, 44, 45syl13anc 1371 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
47 cnfldmul 20601 . . . . . . 7 · = (.r‘ℂfld)
4847subrgmcl 20034 . . . . . 6 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (√‘(abs‘𝐴)) ∈ 𝐾 ∧ (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
4912, 23, 46, 48syl3anc 1370 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
5015, 49sseldd 3927 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
51 eqid 2740 . . . . . . 7 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5251sqreulem 15069 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5319, 43, 52syl2anc 584 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5453simp1d 1141 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴)
5553simp2d 1142 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
5653simp3d 1143 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)
57 df-nel 3052 . . . . 5 ((i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+ ↔ ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5856, 57sylib 217 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5950, 19, 54, 55, 58eqsqrtd 15077 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = (√‘𝐴))
6059, 49eqeltrrd 2842 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘𝐴) ∈ 𝐾)
617, 60pm2.61dane 3034 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wnel 3051  wss 3892   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  ici 10874   + caddc 10875   · cmul 10877  cle 11011  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12729  cexp 13780  cre 14806  csqrt 14942  abscabs 14943  Basecbs 16910  Scalarcsca 16963  SubRingcsubrg 20018  fldccnfld 20595  ℂPreHilccph 24328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-rp 12730  df-ico 13084  df-fz 13239  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-grp 18578  df-minusg 18579  df-subg 18750  df-ghm 18830  df-cmn 19386  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-dvr 19923  df-rnghom 19957  df-drng 19991  df-subrg 20020  df-staf 20103  df-srng 20104  df-lvec 20363  df-cnfld 20596  df-phl 20829  df-cph 24330
This theorem is referenced by:  cphsqrtcl3  24349
  Copyright terms: Public domain W3C validator