MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsqrtcl2 Structured version   Visualization version   GIF version

Theorem cphsqrtcl2 25234
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphsqrtcl2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)

Proof of Theorem cphsqrtcl2
StepHypRef Expression
1 sqrt0 15277 . . . . 5 (√‘0) = 0
2 fveq2 6907 . . . . 5 (𝐴 = 0 → (√‘𝐴) = (√‘0))
3 id 22 . . . . 5 (𝐴 = 0 → 𝐴 = 0)
41, 2, 33eqtr4a 2801 . . . 4 (𝐴 = 0 → (√‘𝐴) = 𝐴)
54adantl 481 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) = 𝐴)
6 simpl2 1191 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → 𝐴𝐾)
75, 6eqeltrd 2839 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 = 0) → (√‘𝐴) ∈ 𝐾)
8 simpl1 1190 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝑊 ∈ ℂPreHil)
9 cphsca.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
10 cphsca.k . . . . . . . 8 𝐾 = (Base‘𝐹)
119, 10cphsubrg 25228 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
128, 11syl 17 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
13 cnfldbas 21386 . . . . . . 7 ℂ = (Base‘ℂfld)
1413subrgss 20589 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
1512, 14syl 17 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐾 ⊆ ℂ)
16 simpl2 1191 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴𝐾)
179, 10cphabscl 25233 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) ∈ 𝐾)
188, 16, 17syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ 𝐾)
1915, 16sseldd 3996 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
2019abscld 15472 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
2119absge0d 15480 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
229, 10cphsqrtcl 25232 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) ∈ 𝐾 ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (√‘(abs‘𝐴)) ∈ 𝐾)
238, 18, 20, 21, 22syl13anc 1371 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘(abs‘𝐴)) ∈ 𝐾)
24 cnfldadd 21388 . . . . . . . . 9 + = (+g‘ℂfld)
2524subrgacl 20600 . . . . . . . 8 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (abs‘𝐴) ∈ 𝐾𝐴𝐾) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
2612, 18, 16, 25syl3anc 1370 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ 𝐾)
279, 10cphabscl 25233 . . . . . . . 8 ((𝑊 ∈ ℂPreHil ∧ ((abs‘𝐴) + 𝐴) ∈ 𝐾) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
288, 26, 27syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾)
2915, 26sseldd 3996 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
30 simpl3 1192 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ -𝐴 ∈ ℝ+)
3120recnd 11287 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
3231, 19subnegd 11625 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
3332eqeq1d 2737 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
3419negcld 11605 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → -𝐴 ∈ ℂ)
3531, 34subeq0ad 11628 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
3633, 35bitr3d 281 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
37 absrpcl 15324 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
3819, 37sylancom 588 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
39 eleq1 2827 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ+ ↔ -𝐴 ∈ ℝ+))
4038, 39syl5ibcom 245 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) = -𝐴 → -𝐴 ∈ ℝ+))
4136, 40sylbid 240 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) = 0 → -𝐴 ∈ ℝ+))
4241necon3bd 2952 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (¬ -𝐴 ∈ ℝ+ → ((abs‘𝐴) + 𝐴) ≠ 0))
4330, 42mpd 15 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((abs‘𝐴) + 𝐴) ≠ 0)
4429, 43absne0d 15483 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
459, 10cphdivcl 25230 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (((abs‘𝐴) + 𝐴) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ∈ 𝐾 ∧ (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
468, 26, 28, 44, 45syl13anc 1371 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾)
47 cnfldmul 21390 . . . . . . 7 · = (.r‘ℂfld)
4847subrgmcl 20601 . . . . . 6 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (√‘(abs‘𝐴)) ∈ 𝐾 ∧ (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ 𝐾) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
4912, 23, 46, 48syl3anc 1370 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ 𝐾)
5015, 49sseldd 3996 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
51 eqid 2735 . . . . . . 7 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5251sqreulem 15395 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5319, 43, 52syl2anc 584 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
5453simp1d 1141 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴)
5553simp2d 1142 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
5653simp3d 1143 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)
57 df-nel 3045 . . . . 5 ((i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+ ↔ ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5856, 57sylib 218 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ¬ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∈ ℝ+)
5950, 19, 54, 55, 58eqsqrtd 15403 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = (√‘𝐴))
6059, 49eqeltrrd 2840 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) ∧ 𝐴 ≠ 0) → (√‘𝐴) ∈ 𝐾)
617, 60pm2.61dane 3027 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ -𝐴 ∈ ℝ+) → (√‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wnel 3044  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  ici 11155   + caddc 11156   · cmul 11158  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  +crp 13032  cexp 14099  cre 15133  csqrt 15269  abscabs 15270  Basecbs 17245  Scalarcsca 17301  SubRingcsubrg 20586  fldccnfld 21382  ℂPreHilccph 25214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-subg 19154  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-staf 20857  df-srng 20858  df-lvec 21120  df-cnfld 21383  df-phl 21662  df-cph 25216
This theorem is referenced by:  cphsqrtcl3  25235
  Copyright terms: Public domain W3C validator