Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiabv Structured version   Visualization version   GIF version

Theorem fiabv 42523
Description: In a finite domain (a finite field), the only absolute value is the trivial one (abvtrivg 20851). (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
fiabv.a 𝐴 = (AbsVal‘𝑅)
fiabv.b 𝐵 = (Base‘𝑅)
fiabv.0 0 = (0g𝑅)
fiabv.t 𝑇 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
fiabv.r (𝜑𝑅 ∈ Domn)
fiabv.f (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fiabv (𝜑𝐴 = {𝑇})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝑅   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝑇(𝑥)

Proof of Theorem fiabv
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fiabv.a . . . . . 6 𝐴 = (AbsVal‘𝑅)
2 fiabv.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2abvf 20833 . . . . 5 (𝑎𝐴𝑎:𝐵⟶ℝ)
43ffnd 6738 . . . 4 (𝑎𝐴𝑎 Fn 𝐵)
54adantl 481 . . 3 ((𝜑𝑎𝐴) → 𝑎 Fn 𝐵)
6 fiabv.r . . . . . . 7 (𝜑𝑅 ∈ Domn)
7 fiabv.0 . . . . . . . 8 0 = (0g𝑅)
8 fiabv.t . . . . . . . 8 𝑇 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
91, 2, 7, 8abvtrivg 20851 . . . . . . 7 (𝑅 ∈ Domn → 𝑇𝐴)
106, 9syl 17 . . . . . 6 (𝜑𝑇𝐴)
111, 2abvf 20833 . . . . . 6 (𝑇𝐴𝑇:𝐵⟶ℝ)
1210, 11syl 17 . . . . 5 (𝜑𝑇:𝐵⟶ℝ)
1312ffnd 6738 . . . 4 (𝜑𝑇 Fn 𝐵)
1413adantr 480 . . 3 ((𝜑𝑎𝐴) → 𝑇 Fn 𝐵)
15 fveq2 6907 . . . . 5 (𝑏 = 0 → (𝑎𝑏) = (𝑎0 ))
16 fveq2 6907 . . . . 5 (𝑏 = 0 → (𝑇𝑏) = (𝑇0 ))
1715, 16eqeq12d 2751 . . . 4 (𝑏 = 0 → ((𝑎𝑏) = (𝑇𝑏) ↔ (𝑎0 ) = (𝑇0 )))
18 eqid 2735 . . . . . . 7 (1r𝑅) = (1r𝑅)
19 eqid 2735 . . . . . . 7 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
206ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝑅 ∈ Domn)
21 fiabv.f . . . . . . . 8 (𝜑𝐵 ∈ Fin)
2221ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝐵 ∈ Fin)
23 eldifsn 4791 . . . . . . . . 9 (𝑏 ∈ (𝐵 ∖ { 0 }) ↔ (𝑏𝐵𝑏0 ))
2423biimpri 228 . . . . . . . 8 ((𝑏𝐵𝑏0 ) → 𝑏 ∈ (𝐵 ∖ { 0 }))
2524adantll 714 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝑏 ∈ (𝐵 ∖ { 0 }))
262, 7, 18, 19, 20, 22, 25fidomncyc 42522 . . . . . 6 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → ∃𝑛 ∈ ℕ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))
27 simprr 773 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))
2827fveq2d 6911 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(𝑛(.g‘(mulGrp‘𝑅))𝑏)) = (𝑎‘(1r𝑅)))
29 domnnzr 20723 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
306, 29syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ NzRing)
3130ad4antr 732 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑅 ∈ NzRing)
32 simp-4r 784 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑎𝐴)
33 simpllr 776 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑏𝐵)
34 simprl 771 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑛 ∈ ℕ)
3534nnnn0d 12585 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑛 ∈ ℕ0)
361, 19, 2, 31, 32, 33, 35abvexp 42519 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(𝑛(.g‘(mulGrp‘𝑅))𝑏)) = ((𝑎𝑏)↑𝑛))
37 simpr 484 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎𝐴)
3818, 7nzrnz 20532 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
3929, 38syl 17 . . . . . . . . . . . 12 (𝑅 ∈ Domn → (1r𝑅) ≠ 0 )
406, 39syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑅) ≠ 0 )
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (1r𝑅) ≠ 0 )
421, 18, 7abv1z 20842 . . . . . . . . . 10 ((𝑎𝐴 ∧ (1r𝑅) ≠ 0 ) → (𝑎‘(1r𝑅)) = 1)
4337, 41, 42syl2anc 584 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎‘(1r𝑅)) = 1)
4443ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(1r𝑅)) = 1)
4528, 36, 443eqtr3d 2783 . . . . . . 7 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → ((𝑎𝑏)↑𝑛) = 1)
461, 2abvcl 20834 . . . . . . . . 9 ((𝑎𝐴𝑏𝐵) → (𝑎𝑏) ∈ ℝ)
4732, 33, 46syl2anc 584 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎𝑏) ∈ ℝ)
481, 2abvge0 20835 . . . . . . . . 9 ((𝑎𝐴𝑏𝐵) → 0 ≤ (𝑎𝑏))
4932, 33, 48syl2anc 584 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 0 ≤ (𝑎𝑏))
5047, 34, 49expeq1d 42338 . . . . . . 7 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (((𝑎𝑏)↑𝑛) = 1 ↔ (𝑎𝑏) = 1))
5145, 50mpbid 232 . . . . . 6 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎𝑏) = 1)
5226, 51rexlimddv 3159 . . . . 5 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑎𝑏) = 1)
53 eqeq1 2739 . . . . . . . . 9 (𝑥 = 𝑏 → (𝑥 = 0𝑏 = 0 ))
5453ifbid 4554 . . . . . . . 8 (𝑥 = 𝑏 → if(𝑥 = 0 , 0, 1) = if(𝑏 = 0 , 0, 1))
55 ifnefalse 4543 . . . . . . . . 9 (𝑏0 → if(𝑏 = 0 , 0, 1) = 1)
5655adantl 481 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → if(𝑏 = 0 , 0, 1) = 1)
5754, 56sylan9eqr 2797 . . . . . . 7 ((((𝜑𝑏𝐵) ∧ 𝑏0 ) ∧ 𝑥 = 𝑏) → if(𝑥 = 0 , 0, 1) = 1)
58 simplr 769 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → 𝑏𝐵)
59 1cnd 11254 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → 1 ∈ ℂ)
608, 57, 58, 59fvmptd2 7024 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → (𝑇𝑏) = 1)
6160adantllr 719 . . . . 5 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑇𝑏) = 1)
6252, 61eqtr4d 2778 . . . 4 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑎𝑏) = (𝑇𝑏))
631, 7abv0 20841 . . . . . . 7 (𝑎𝐴 → (𝑎0 ) = 0)
6463adantl 481 . . . . . 6 ((𝜑𝑎𝐴) → (𝑎0 ) = 0)
651, 7abv0 20841 . . . . . . . 8 (𝑇𝐴 → (𝑇0 ) = 0)
6610, 65syl 17 . . . . . . 7 (𝜑 → (𝑇0 ) = 0)
6766adantr 480 . . . . . 6 ((𝜑𝑎𝐴) → (𝑇0 ) = 0)
6864, 67eqtr4d 2778 . . . . 5 ((𝜑𝑎𝐴) → (𝑎0 ) = (𝑇0 ))
6968adantr 480 . . . 4 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → (𝑎0 ) = (𝑇0 ))
7017, 62, 69pm2.61ne 3025 . . 3 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → (𝑎𝑏) = (𝑇𝑏))
715, 14, 70eqfnfvd 7054 . 2 ((𝜑𝑎𝐴) → 𝑎 = 𝑇)
7271, 10eqsnd 4835 1 (𝜑𝐴 = {𝑇})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cdif 3960  ifcif 4531  {csn 4631   class class class wbr 5148  cmpt 5231   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154  cle 11294  cn 12264  cexp 14099  Basecbs 17245  0gc0g 17486  .gcmg 19098  mulGrpcmgp 20152  1rcur 20199  NzRingcnzr 20529  Domncdomn 20709  AbsValcabv 20826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-seq 14040  df-exp 14100  df-hash 14367  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-nzr 20530  df-domn 20712  df-abv 20827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator