| Step | Hyp | Ref
| Expression |
| 1 | | fiabv.a |
. . . . . 6
⊢ 𝐴 = (AbsVal‘𝑅) |
| 2 | | fiabv.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 3 | 1, 2 | abvf 20817 |
. . . . 5
⊢ (𝑎 ∈ 𝐴 → 𝑎:𝐵⟶ℝ) |
| 4 | 3 | ffnd 6736 |
. . . 4
⊢ (𝑎 ∈ 𝐴 → 𝑎 Fn 𝐵) |
| 5 | 4 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 Fn 𝐵) |
| 6 | | fiabv.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 7 | | fiabv.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
| 8 | | fiabv.t |
. . . . . . . 8
⊢ 𝑇 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) |
| 9 | 1, 2, 7, 8 | abvtrivg 20835 |
. . . . . . 7
⊢ (𝑅 ∈ Domn → 𝑇 ∈ 𝐴) |
| 10 | 6, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
| 11 | 1, 2 | abvf 20817 |
. . . . . 6
⊢ (𝑇 ∈ 𝐴 → 𝑇:𝐵⟶ℝ) |
| 12 | 10, 11 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑇:𝐵⟶ℝ) |
| 13 | 12 | ffnd 6736 |
. . . 4
⊢ (𝜑 → 𝑇 Fn 𝐵) |
| 14 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑇 Fn 𝐵) |
| 15 | | fveq2 6905 |
. . . . 5
⊢ (𝑏 = 0 → (𝑎‘𝑏) = (𝑎‘ 0 )) |
| 16 | | fveq2 6905 |
. . . . 5
⊢ (𝑏 = 0 → (𝑇‘𝑏) = (𝑇‘ 0 )) |
| 17 | 15, 16 | eqeq12d 2752 |
. . . 4
⊢ (𝑏 = 0 → ((𝑎‘𝑏) = (𝑇‘𝑏) ↔ (𝑎‘ 0 ) = (𝑇‘ 0 ))) |
| 18 | | eqid 2736 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 19 | | eqid 2736 |
. . . . . . 7
⊢
(.g‘(mulGrp‘𝑅)) =
(.g‘(mulGrp‘𝑅)) |
| 20 | 6 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → 𝑅 ∈ Domn) |
| 21 | | fiabv.f |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 22 | 21 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → 𝐵 ∈ Fin) |
| 23 | | eldifsn 4785 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝐵 ∖ { 0 }) ↔ (𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 )) |
| 24 | 23 | biimpri 228 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) → 𝑏 ∈ (𝐵 ∖ { 0 })) |
| 25 | 24 | adantll 714 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → 𝑏 ∈ (𝐵 ∖ { 0 })) |
| 26 | 2, 7, 18, 19, 20, 22, 25 | fidomncyc 42550 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → ∃𝑛 ∈ ℕ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅)) |
| 27 | | simprr 772 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅)) |
| 28 | 27 | fveq2d 6909 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → (𝑎‘(𝑛(.g‘(mulGrp‘𝑅))𝑏)) = (𝑎‘(1r‘𝑅))) |
| 29 | | domnnzr 20707 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 30 | 6, 29 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 31 | 30 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → 𝑅 ∈ NzRing) |
| 32 | | simp-4r 783 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → 𝑎 ∈ 𝐴) |
| 33 | | simpllr 775 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → 𝑏 ∈ 𝐵) |
| 34 | | simprl 770 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → 𝑛 ∈ ℕ) |
| 35 | 34 | nnnn0d 12589 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → 𝑛 ∈ ℕ0) |
| 36 | 1, 19, 2, 31, 32, 33, 35 | abvexp 42547 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → (𝑎‘(𝑛(.g‘(mulGrp‘𝑅))𝑏)) = ((𝑎‘𝑏)↑𝑛)) |
| 37 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
| 38 | 18, 7 | nzrnz 20516 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ 0
) |
| 39 | 29, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Domn →
(1r‘𝑅)
≠ 0
) |
| 40 | 6, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (1r‘𝑅) ≠ 0 ) |
| 41 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (1r‘𝑅) ≠ 0 ) |
| 42 | 1, 18, 7 | abv1z 20826 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ 𝐴 ∧ (1r‘𝑅) ≠ 0 ) → (𝑎‘(1r‘𝑅)) = 1) |
| 43 | 37, 41, 42 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎‘(1r‘𝑅)) = 1) |
| 44 | 43 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → (𝑎‘(1r‘𝑅)) = 1) |
| 45 | 28, 36, 44 | 3eqtr3d 2784 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → ((𝑎‘𝑏)↑𝑛) = 1) |
| 46 | 1, 2 | abvcl 20818 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎‘𝑏) ∈ ℝ) |
| 47 | 32, 33, 46 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → (𝑎‘𝑏) ∈ ℝ) |
| 48 | 1, 2 | abvge0 20819 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 0 ≤ (𝑎‘𝑏)) |
| 49 | 32, 33, 48 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → 0 ≤ (𝑎‘𝑏)) |
| 50 | 47, 34, 49 | expeq1d 42364 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → (((𝑎‘𝑏)↑𝑛) = 1 ↔ (𝑎‘𝑏) = 1)) |
| 51 | 45, 50 | mpbid 232 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r‘𝑅))) → (𝑎‘𝑏) = 1) |
| 52 | 26, 51 | rexlimddv 3160 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → (𝑎‘𝑏) = 1) |
| 53 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑥 = 𝑏 → (𝑥 = 0 ↔ 𝑏 = 0 )) |
| 54 | 53 | ifbid 4548 |
. . . . . . . 8
⊢ (𝑥 = 𝑏 → if(𝑥 = 0 , 0, 1) = if(𝑏 = 0 , 0, 1)) |
| 55 | | ifnefalse 4536 |
. . . . . . . . 9
⊢ (𝑏 ≠ 0 → if(𝑏 = 0 , 0, 1) =
1) |
| 56 | 55 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → if(𝑏 = 0 , 0, 1) =
1) |
| 57 | 54, 56 | sylan9eqr 2798 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) ∧ 𝑥 = 𝑏) → if(𝑥 = 0 , 0, 1) =
1) |
| 58 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → 𝑏 ∈ 𝐵) |
| 59 | | 1cnd 11257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → 1 ∈
ℂ) |
| 60 | 8, 57, 58, 59 | fvmptd2 7023 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → (𝑇‘𝑏) = 1) |
| 61 | 60 | adantllr 719 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → (𝑇‘𝑏) = 1) |
| 62 | 52, 61 | eqtr4d 2779 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) ∧ 𝑏 ≠ 0 ) → (𝑎‘𝑏) = (𝑇‘𝑏)) |
| 63 | 1, 7 | abv0 20825 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐴 → (𝑎‘ 0 ) = 0) |
| 64 | 63 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎‘ 0 ) = 0) |
| 65 | 1, 7 | abv0 20825 |
. . . . . . . 8
⊢ (𝑇 ∈ 𝐴 → (𝑇‘ 0 ) = 0) |
| 66 | 10, 65 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑇‘ 0 ) = 0) |
| 67 | 66 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑇‘ 0 ) = 0) |
| 68 | 64, 67 | eqtr4d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎‘ 0 ) = (𝑇‘ 0 )) |
| 69 | 68 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑎‘ 0 ) = (𝑇‘ 0 )) |
| 70 | 17, 62, 69 | pm2.61ne 3026 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑎‘𝑏) = (𝑇‘𝑏)) |
| 71 | 5, 14, 70 | eqfnfvd 7053 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 = 𝑇) |
| 72 | 71, 10 | eqsnd 4829 |
1
⊢ (𝜑 → 𝐴 = {𝑇}) |