Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiabv Structured version   Visualization version   GIF version

Theorem fiabv 42628
Description: In a finite domain (a finite field), the only absolute value is the trivial one (abvtrivg 20748). (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
fiabv.a 𝐴 = (AbsVal‘𝑅)
fiabv.b 𝐵 = (Base‘𝑅)
fiabv.0 0 = (0g𝑅)
fiabv.t 𝑇 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
fiabv.r (𝜑𝑅 ∈ Domn)
fiabv.f (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fiabv (𝜑𝐴 = {𝑇})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝑅   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝑇(𝑥)

Proof of Theorem fiabv
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fiabv.a . . . . . 6 𝐴 = (AbsVal‘𝑅)
2 fiabv.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2abvf 20730 . . . . 5 (𝑎𝐴𝑎:𝐵⟶ℝ)
43ffnd 6652 . . . 4 (𝑎𝐴𝑎 Fn 𝐵)
54adantl 481 . . 3 ((𝜑𝑎𝐴) → 𝑎 Fn 𝐵)
6 fiabv.r . . . . . . 7 (𝜑𝑅 ∈ Domn)
7 fiabv.0 . . . . . . . 8 0 = (0g𝑅)
8 fiabv.t . . . . . . . 8 𝑇 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
91, 2, 7, 8abvtrivg 20748 . . . . . . 7 (𝑅 ∈ Domn → 𝑇𝐴)
106, 9syl 17 . . . . . 6 (𝜑𝑇𝐴)
111, 2abvf 20730 . . . . . 6 (𝑇𝐴𝑇:𝐵⟶ℝ)
1210, 11syl 17 . . . . 5 (𝜑𝑇:𝐵⟶ℝ)
1312ffnd 6652 . . . 4 (𝜑𝑇 Fn 𝐵)
1413adantr 480 . . 3 ((𝜑𝑎𝐴) → 𝑇 Fn 𝐵)
15 fveq2 6822 . . . . 5 (𝑏 = 0 → (𝑎𝑏) = (𝑎0 ))
16 fveq2 6822 . . . . 5 (𝑏 = 0 → (𝑇𝑏) = (𝑇0 ))
1715, 16eqeq12d 2747 . . . 4 (𝑏 = 0 → ((𝑎𝑏) = (𝑇𝑏) ↔ (𝑎0 ) = (𝑇0 )))
18 eqid 2731 . . . . . . 7 (1r𝑅) = (1r𝑅)
19 eqid 2731 . . . . . . 7 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
206ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝑅 ∈ Domn)
21 fiabv.f . . . . . . . 8 (𝜑𝐵 ∈ Fin)
2221ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝐵 ∈ Fin)
23 eldifsn 4735 . . . . . . . . 9 (𝑏 ∈ (𝐵 ∖ { 0 }) ↔ (𝑏𝐵𝑏0 ))
2423biimpri 228 . . . . . . . 8 ((𝑏𝐵𝑏0 ) → 𝑏 ∈ (𝐵 ∖ { 0 }))
2524adantll 714 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝑏 ∈ (𝐵 ∖ { 0 }))
262, 7, 18, 19, 20, 22, 25fidomncyc 42627 . . . . . 6 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → ∃𝑛 ∈ ℕ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))
27 simprr 772 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))
2827fveq2d 6826 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(𝑛(.g‘(mulGrp‘𝑅))𝑏)) = (𝑎‘(1r𝑅)))
29 domnnzr 20621 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
306, 29syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ NzRing)
3130ad4antr 732 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑅 ∈ NzRing)
32 simp-4r 783 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑎𝐴)
33 simpllr 775 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑏𝐵)
34 simprl 770 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑛 ∈ ℕ)
3534nnnn0d 12442 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑛 ∈ ℕ0)
361, 19, 2, 31, 32, 33, 35abvexp 42624 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(𝑛(.g‘(mulGrp‘𝑅))𝑏)) = ((𝑎𝑏)↑𝑛))
37 simpr 484 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎𝐴)
3818, 7nzrnz 20430 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
3929, 38syl 17 . . . . . . . . . . . 12 (𝑅 ∈ Domn → (1r𝑅) ≠ 0 )
406, 39syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑅) ≠ 0 )
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (1r𝑅) ≠ 0 )
421, 18, 7abv1z 20739 . . . . . . . . . 10 ((𝑎𝐴 ∧ (1r𝑅) ≠ 0 ) → (𝑎‘(1r𝑅)) = 1)
4337, 41, 42syl2anc 584 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎‘(1r𝑅)) = 1)
4443ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(1r𝑅)) = 1)
4528, 36, 443eqtr3d 2774 . . . . . . 7 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → ((𝑎𝑏)↑𝑛) = 1)
461, 2abvcl 20731 . . . . . . . . 9 ((𝑎𝐴𝑏𝐵) → (𝑎𝑏) ∈ ℝ)
4732, 33, 46syl2anc 584 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎𝑏) ∈ ℝ)
481, 2abvge0 20732 . . . . . . . . 9 ((𝑎𝐴𝑏𝐵) → 0 ≤ (𝑎𝑏))
4932, 33, 48syl2anc 584 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 0 ≤ (𝑎𝑏))
5047, 34, 49expeq1d 42416 . . . . . . 7 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (((𝑎𝑏)↑𝑛) = 1 ↔ (𝑎𝑏) = 1))
5145, 50mpbid 232 . . . . . 6 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎𝑏) = 1)
5226, 51rexlimddv 3139 . . . . 5 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑎𝑏) = 1)
53 eqeq1 2735 . . . . . . . . 9 (𝑥 = 𝑏 → (𝑥 = 0𝑏 = 0 ))
5453ifbid 4496 . . . . . . . 8 (𝑥 = 𝑏 → if(𝑥 = 0 , 0, 1) = if(𝑏 = 0 , 0, 1))
55 ifnefalse 4484 . . . . . . . . 9 (𝑏0 → if(𝑏 = 0 , 0, 1) = 1)
5655adantl 481 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → if(𝑏 = 0 , 0, 1) = 1)
5754, 56sylan9eqr 2788 . . . . . . 7 ((((𝜑𝑏𝐵) ∧ 𝑏0 ) ∧ 𝑥 = 𝑏) → if(𝑥 = 0 , 0, 1) = 1)
58 simplr 768 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → 𝑏𝐵)
59 1cnd 11107 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → 1 ∈ ℂ)
608, 57, 58, 59fvmptd2 6937 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → (𝑇𝑏) = 1)
6160adantllr 719 . . . . 5 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑇𝑏) = 1)
6252, 61eqtr4d 2769 . . . 4 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑎𝑏) = (𝑇𝑏))
631, 7abv0 20738 . . . . . . 7 (𝑎𝐴 → (𝑎0 ) = 0)
6463adantl 481 . . . . . 6 ((𝜑𝑎𝐴) → (𝑎0 ) = 0)
651, 7abv0 20738 . . . . . . . 8 (𝑇𝐴 → (𝑇0 ) = 0)
6610, 65syl 17 . . . . . . 7 (𝜑 → (𝑇0 ) = 0)
6766adantr 480 . . . . . 6 ((𝜑𝑎𝐴) → (𝑇0 ) = 0)
6864, 67eqtr4d 2769 . . . . 5 ((𝜑𝑎𝐴) → (𝑎0 ) = (𝑇0 ))
6968adantr 480 . . . 4 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → (𝑎0 ) = (𝑇0 ))
7017, 62, 69pm2.61ne 3013 . . 3 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → (𝑎𝑏) = (𝑇𝑏))
715, 14, 70eqfnfvd 6967 . 2 ((𝜑𝑎𝐴) → 𝑎 = 𝑇)
7271, 10eqsnd 4779 1 (𝜑𝐴 = {𝑇})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007  cle 11147  cn 12125  cexp 13968  Basecbs 17120  0gc0g 17343  .gcmg 18980  mulGrpcmgp 20058  1rcur 20099  NzRingcnzr 20427  Domncdomn 20607  AbsValcabv 20723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-seq 13909  df-exp 13969  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-nzr 20428  df-domn 20610  df-abv 20724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator