Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiabv Structured version   Visualization version   GIF version

Theorem fiabv 42518
Description: In a finite domain (a finite field), the only absolute value is the trivial one (abvtrivg 20754). (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
fiabv.a 𝐴 = (AbsVal‘𝑅)
fiabv.b 𝐵 = (Base‘𝑅)
fiabv.0 0 = (0g𝑅)
fiabv.t 𝑇 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
fiabv.r (𝜑𝑅 ∈ Domn)
fiabv.f (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fiabv (𝜑𝐴 = {𝑇})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝑅   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝑇(𝑥)

Proof of Theorem fiabv
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fiabv.a . . . . . 6 𝐴 = (AbsVal‘𝑅)
2 fiabv.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2abvf 20736 . . . . 5 (𝑎𝐴𝑎:𝐵⟶ℝ)
43ffnd 6671 . . . 4 (𝑎𝐴𝑎 Fn 𝐵)
54adantl 481 . . 3 ((𝜑𝑎𝐴) → 𝑎 Fn 𝐵)
6 fiabv.r . . . . . . 7 (𝜑𝑅 ∈ Domn)
7 fiabv.0 . . . . . . . 8 0 = (0g𝑅)
8 fiabv.t . . . . . . . 8 𝑇 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
91, 2, 7, 8abvtrivg 20754 . . . . . . 7 (𝑅 ∈ Domn → 𝑇𝐴)
106, 9syl 17 . . . . . 6 (𝜑𝑇𝐴)
111, 2abvf 20736 . . . . . 6 (𝑇𝐴𝑇:𝐵⟶ℝ)
1210, 11syl 17 . . . . 5 (𝜑𝑇:𝐵⟶ℝ)
1312ffnd 6671 . . . 4 (𝜑𝑇 Fn 𝐵)
1413adantr 480 . . 3 ((𝜑𝑎𝐴) → 𝑇 Fn 𝐵)
15 fveq2 6840 . . . . 5 (𝑏 = 0 → (𝑎𝑏) = (𝑎0 ))
16 fveq2 6840 . . . . 5 (𝑏 = 0 → (𝑇𝑏) = (𝑇0 ))
1715, 16eqeq12d 2745 . . . 4 (𝑏 = 0 → ((𝑎𝑏) = (𝑇𝑏) ↔ (𝑎0 ) = (𝑇0 )))
18 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
19 eqid 2729 . . . . . . 7 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
206ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝑅 ∈ Domn)
21 fiabv.f . . . . . . . 8 (𝜑𝐵 ∈ Fin)
2221ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝐵 ∈ Fin)
23 eldifsn 4746 . . . . . . . . 9 (𝑏 ∈ (𝐵 ∖ { 0 }) ↔ (𝑏𝐵𝑏0 ))
2423biimpri 228 . . . . . . . 8 ((𝑏𝐵𝑏0 ) → 𝑏 ∈ (𝐵 ∖ { 0 }))
2524adantll 714 . . . . . . 7 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → 𝑏 ∈ (𝐵 ∖ { 0 }))
262, 7, 18, 19, 20, 22, 25fidomncyc 42517 . . . . . 6 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → ∃𝑛 ∈ ℕ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))
27 simprr 772 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))
2827fveq2d 6844 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(𝑛(.g‘(mulGrp‘𝑅))𝑏)) = (𝑎‘(1r𝑅)))
29 domnnzr 20627 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
306, 29syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ NzRing)
3130ad4antr 732 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑅 ∈ NzRing)
32 simp-4r 783 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑎𝐴)
33 simpllr 775 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑏𝐵)
34 simprl 770 . . . . . . . . . 10 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑛 ∈ ℕ)
3534nnnn0d 12481 . . . . . . . . 9 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 𝑛 ∈ ℕ0)
361, 19, 2, 31, 32, 33, 35abvexp 42514 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(𝑛(.g‘(mulGrp‘𝑅))𝑏)) = ((𝑎𝑏)↑𝑛))
37 simpr 484 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎𝐴)
3818, 7nzrnz 20436 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
3929, 38syl 17 . . . . . . . . . . . 12 (𝑅 ∈ Domn → (1r𝑅) ≠ 0 )
406, 39syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑅) ≠ 0 )
4140adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (1r𝑅) ≠ 0 )
421, 18, 7abv1z 20745 . . . . . . . . . 10 ((𝑎𝐴 ∧ (1r𝑅) ≠ 0 ) → (𝑎‘(1r𝑅)) = 1)
4337, 41, 42syl2anc 584 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎‘(1r𝑅)) = 1)
4443ad3antrrr 730 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎‘(1r𝑅)) = 1)
4528, 36, 443eqtr3d 2772 . . . . . . 7 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → ((𝑎𝑏)↑𝑛) = 1)
461, 2abvcl 20737 . . . . . . . . 9 ((𝑎𝐴𝑏𝐵) → (𝑎𝑏) ∈ ℝ)
4732, 33, 46syl2anc 584 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎𝑏) ∈ ℝ)
481, 2abvge0 20738 . . . . . . . . 9 ((𝑎𝐴𝑏𝐵) → 0 ≤ (𝑎𝑏))
4932, 33, 48syl2anc 584 . . . . . . . 8 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → 0 ≤ (𝑎𝑏))
5047, 34, 49expeq1d 42306 . . . . . . 7 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (((𝑎𝑏)↑𝑛) = 1 ↔ (𝑎𝑏) = 1))
5145, 50mpbid 232 . . . . . 6 (((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) ∧ (𝑛 ∈ ℕ ∧ (𝑛(.g‘(mulGrp‘𝑅))𝑏) = (1r𝑅))) → (𝑎𝑏) = 1)
5226, 51rexlimddv 3140 . . . . 5 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑎𝑏) = 1)
53 eqeq1 2733 . . . . . . . . 9 (𝑥 = 𝑏 → (𝑥 = 0𝑏 = 0 ))
5453ifbid 4508 . . . . . . . 8 (𝑥 = 𝑏 → if(𝑥 = 0 , 0, 1) = if(𝑏 = 0 , 0, 1))
55 ifnefalse 4496 . . . . . . . . 9 (𝑏0 → if(𝑏 = 0 , 0, 1) = 1)
5655adantl 481 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → if(𝑏 = 0 , 0, 1) = 1)
5754, 56sylan9eqr 2786 . . . . . . 7 ((((𝜑𝑏𝐵) ∧ 𝑏0 ) ∧ 𝑥 = 𝑏) → if(𝑥 = 0 , 0, 1) = 1)
58 simplr 768 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → 𝑏𝐵)
59 1cnd 11147 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → 1 ∈ ℂ)
608, 57, 58, 59fvmptd2 6958 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑏0 ) → (𝑇𝑏) = 1)
6160adantllr 719 . . . . 5 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑇𝑏) = 1)
6252, 61eqtr4d 2767 . . . 4 ((((𝜑𝑎𝐴) ∧ 𝑏𝐵) ∧ 𝑏0 ) → (𝑎𝑏) = (𝑇𝑏))
631, 7abv0 20744 . . . . . . 7 (𝑎𝐴 → (𝑎0 ) = 0)
6463adantl 481 . . . . . 6 ((𝜑𝑎𝐴) → (𝑎0 ) = 0)
651, 7abv0 20744 . . . . . . . 8 (𝑇𝐴 → (𝑇0 ) = 0)
6610, 65syl 17 . . . . . . 7 (𝜑 → (𝑇0 ) = 0)
6766adantr 480 . . . . . 6 ((𝜑𝑎𝐴) → (𝑇0 ) = 0)
6864, 67eqtr4d 2767 . . . . 5 ((𝜑𝑎𝐴) → (𝑎0 ) = (𝑇0 ))
6968adantr 480 . . . 4 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → (𝑎0 ) = (𝑇0 ))
7017, 62, 69pm2.61ne 3010 . . 3 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → (𝑎𝑏) = (𝑇𝑏))
715, 14, 70eqfnfvd 6988 . 2 ((𝜑𝑎𝐴) → 𝑎 = 𝑇)
7271, 10eqsnd 4790 1 (𝜑𝐴 = {𝑇})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11044  cr 11045  0cc0 11046  1c1 11047  cle 11187  cn 12164  cexp 14004  Basecbs 17156  0gc0g 17379  .gcmg 18982  mulGrpcmgp 20061  1rcur 20102  NzRingcnzr 20433  Domncdomn 20613  AbsValcabv 20729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-n0 12421  df-z 12508  df-uz 12772  df-rp 12930  df-ico 13290  df-fz 13447  df-seq 13945  df-exp 14005  df-hash 14274  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-plusg 17210  df-0g 17381  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-nzr 20434  df-domn 20616  df-abv 20730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator