![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0e | Structured version Visualization version GIF version |
Description: Auxiliary lemma 5 for gausslemma2d 26856. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
Ref | Expression |
---|---|
gausslemma2dlem0e | ⊢ (𝜑 → (𝑀 · 2) < (𝑃 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
2 | 1 | oveq1i 7413 | . 2 ⊢ (𝑀 · 2) = ((⌊‘(𝑃 / 4)) · 2) |
3 | gausslemma2dlem0.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
4 | nnoddn2prm 16739 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) | |
5 | nnz 12574 | . . . . 5 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
6 | 5 | anim1i 616 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃)) |
7 | 3, 4, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃)) |
8 | flodddiv4t2lthalf 16354 | . . 3 ⊢ ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → ((⌊‘(𝑃 / 4)) · 2) < (𝑃 / 2)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → ((⌊‘(𝑃 / 4)) · 2) < (𝑃 / 2)) |
10 | 2, 9 | eqbrtrid 5181 | 1 ⊢ (𝜑 → (𝑀 · 2) < (𝑃 / 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∖ cdif 3943 {csn 4626 class class class wbr 5146 ‘cfv 6539 (class class class)co 7403 · cmul 11110 < clt 11243 / cdiv 11866 ℕcn 12207 2c2 12262 4c4 12264 ℤcz 12553 ⌊cfl 13750 ∥ cdvds 16192 ℙcprime 16603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-2o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-inf 9433 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-div 11867 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-n0 12468 df-z 12554 df-uz 12818 df-rp 12970 df-fl 13752 df-seq 13962 df-exp 14023 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16193 df-prm 16604 |
This theorem is referenced by: gausslemma2dlem2 26849 |
Copyright terms: Public domain | W3C validator |