Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzo0opth Structured version   Visualization version   GIF version

Theorem fzo0opth 32785
Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13461 and fzoopth 13662. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
fzo0opth.1 (𝜑𝑀 ∈ ℕ0)
fzo0opth.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fzo0opth (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem fzo0opth
StepHypRef Expression
1 0z 12479 . . . 4 0 ∈ ℤ
2 fzo0opth.1 . . . . 5 (𝜑𝑀 ∈ ℕ0)
32nn0zd 12494 . . . 4 (𝜑𝑀 ∈ ℤ)
4 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀)
5 fzoopth 13662 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
61, 3, 4, 5mp3an2ani 1470 . . 3 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
7 eqid 2731 . . . 4 0 = 0
87biantrur 530 . . 3 (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁))
96, 8bitr4di 289 . 2 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
10 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀)
1110oveq2d 7362 . . . . . 6 ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀))
12 fzo0 13583 . . . . . 6 (0..^0) = ∅
1311, 12eqtr3di 2781 . . . . 5 ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅)
1413eqeq1d 2733 . . . 4 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁)))
15 eqcom 2738 . . . 4 (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅)
1614, 15bitrdi 287 . . 3 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅))
17 0zd 12480 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ)
18 fzo0opth.2 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1918nn0zd 12494 . . . . 5 (𝜑𝑁 ∈ ℤ)
2019adantr 480 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ)
21 fzon 13580 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
2217, 20, 21syl2anc 584 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
23 nn0le0eq0 12409 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0))
2423biimpa 476 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ≤ 0) → 𝑁 = 0)
2518, 24sylan 580 . . . . . 6 ((𝜑𝑁 ≤ 0) → 𝑁 = 0)
2625adantlr 715 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0)
27 id 22 . . . . . . 7 (𝑁 = 0 → 𝑁 = 0)
28 0le0 12226 . . . . . . 7 0 ≤ 0
2927, 28eqbrtrdi 5128 . . . . . 6 (𝑁 = 0 → 𝑁 ≤ 0)
3029adantl 481 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0)
3126, 30impbida 800 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0))
32 eqcom 2738 . . . . 5 (𝑁 = 0 ↔ 0 = 𝑁)
3332a1i 11 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁))
3410eqeq1d 2733 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁𝑀 = 𝑁))
3531, 33, 343bitrd 305 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁))
3616, 22, 353bitr2d 307 . 2 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
372nn0ge0d 12445 . . 3 (𝜑 → 0 ≤ 𝑀)
38 0red 11115 . . . 4 (𝜑 → 0 ∈ ℝ)
392nn0red 12443 . . . 4 (𝜑𝑀 ∈ ℝ)
4038, 39leloed 11256 . . 3 (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀)))
4137, 40mpbid 232 . 2 (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀))
429, 36, 41mpjaodan 960 1 (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  c0 4280   class class class wbr 5089  (class class class)co 7346  0cc0 11006   < clt 11146  cle 11147  0cn0 12381  cz 12468  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by:  1arithidomlem2  33501  1arithidom  33502
  Copyright terms: Public domain W3C validator