Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzo0opth Structured version   Visualization version   GIF version

Theorem fzo0opth 32810
Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13621 and fzoopth 13812. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
fzo0opth.1 (𝜑𝑀 ∈ ℕ0)
fzo0opth.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fzo0opth (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem fzo0opth
StepHypRef Expression
1 0z 12650 . . . 4 0 ∈ ℤ
2 fzo0opth.1 . . . . 5 (𝜑𝑀 ∈ ℕ0)
32nn0zd 12665 . . . 4 (𝜑𝑀 ∈ ℤ)
4 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀)
5 fzoopth 13812 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
61, 3, 4, 5mp3an2ani 1468 . . 3 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
7 eqid 2740 . . . 4 0 = 0
87biantrur 530 . . 3 (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁))
96, 8bitr4di 289 . 2 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
10 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀)
1110oveq2d 7464 . . . . . 6 ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀))
12 fzo0 13740 . . . . . 6 (0..^0) = ∅
1311, 12eqtr3di 2795 . . . . 5 ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅)
1413eqeq1d 2742 . . . 4 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁)))
15 eqcom 2747 . . . 4 (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅)
1614, 15bitrdi 287 . . 3 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅))
17 0zd 12651 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ)
18 fzo0opth.2 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1918nn0zd 12665 . . . . 5 (𝜑𝑁 ∈ ℤ)
2019adantr 480 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ)
21 fzon 13737 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
2217, 20, 21syl2anc 583 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
23 nn0le0eq0 12581 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0))
2423biimpa 476 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ≤ 0) → 𝑁 = 0)
2518, 24sylan 579 . . . . . 6 ((𝜑𝑁 ≤ 0) → 𝑁 = 0)
2625adantlr 714 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0)
27 id 22 . . . . . . 7 (𝑁 = 0 → 𝑁 = 0)
28 0le0 12394 . . . . . . 7 0 ≤ 0
2927, 28eqbrtrdi 5205 . . . . . 6 (𝑁 = 0 → 𝑁 ≤ 0)
3029adantl 481 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0)
3126, 30impbida 800 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0))
32 eqcom 2747 . . . . 5 (𝑁 = 0 ↔ 0 = 𝑁)
3332a1i 11 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁))
3410eqeq1d 2742 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁𝑀 = 𝑁))
3531, 33, 343bitrd 305 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁))
3616, 22, 353bitr2d 307 . 2 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
372nn0ge0d 12616 . . 3 (𝜑 → 0 ≤ 𝑀)
38 0red 11293 . . . 4 (𝜑 → 0 ∈ ℝ)
392nn0red 12614 . . . 4 (𝜑𝑀 ∈ ℝ)
4038, 39leloed 11433 . . 3 (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀)))
4137, 40mpbid 232 . 2 (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀))
429, 36, 41mpjaodan 959 1 (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  c0 4352   class class class wbr 5166  (class class class)co 7448  0cc0 11184   < clt 11324  cle 11325  0cn0 12553  cz 12639  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by:  1arithidomlem2  33529  1arithidom  33530
  Copyright terms: Public domain W3C validator