Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzo0opth Structured version   Visualization version   GIF version

Theorem fzo0opth 32655
Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13573 and fzoopth 13763. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
fzo0opth.1 (𝜑𝑀 ∈ ℕ0)
fzo0opth.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fzo0opth (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem fzo0opth
StepHypRef Expression
1 0z 12602 . . . 4 0 ∈ ℤ
2 fzo0opth.1 . . . . 5 (𝜑𝑀 ∈ ℕ0)
32nn0zd 12617 . . . 4 (𝜑𝑀 ∈ ℤ)
4 simpr 483 . . . 4 ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀)
5 fzoopth 13763 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
61, 3, 4, 5mp3an2ani 1464 . . 3 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
7 eqid 2725 . . . 4 0 = 0
87biantrur 529 . . 3 (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁))
96, 8bitr4di 288 . 2 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
10 simpr 483 . . . . . . 7 ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀)
1110oveq2d 7435 . . . . . 6 ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀))
12 fzo0 13691 . . . . . 6 (0..^0) = ∅
1311, 12eqtr3di 2780 . . . . 5 ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅)
1413eqeq1d 2727 . . . 4 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁)))
15 eqcom 2732 . . . 4 (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅)
1614, 15bitrdi 286 . . 3 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅))
17 0zd 12603 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ)
18 fzo0opth.2 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1918nn0zd 12617 . . . . 5 (𝜑𝑁 ∈ ℤ)
2019adantr 479 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ)
21 fzon 13688 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
2217, 20, 21syl2anc 582 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
23 nn0le0eq0 12533 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0))
2423biimpa 475 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ≤ 0) → 𝑁 = 0)
2518, 24sylan 578 . . . . . 6 ((𝜑𝑁 ≤ 0) → 𝑁 = 0)
2625adantlr 713 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0)
27 id 22 . . . . . . 7 (𝑁 = 0 → 𝑁 = 0)
28 0le0 12346 . . . . . . 7 0 ≤ 0
2927, 28eqbrtrdi 5188 . . . . . 6 (𝑁 = 0 → 𝑁 ≤ 0)
3029adantl 480 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0)
3126, 30impbida 799 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0))
32 eqcom 2732 . . . . 5 (𝑁 = 0 ↔ 0 = 𝑁)
3332a1i 11 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁))
3410eqeq1d 2727 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁𝑀 = 𝑁))
3531, 33, 343bitrd 304 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁))
3616, 22, 353bitr2d 306 . 2 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
372nn0ge0d 12568 . . 3 (𝜑 → 0 ≤ 𝑀)
38 0red 11249 . . . 4 (𝜑 → 0 ∈ ℝ)
392nn0red 12566 . . . 4 (𝜑𝑀 ∈ ℝ)
4038, 39leloed 11389 . . 3 (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀)))
4137, 40mpbid 231 . 2 (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀))
429, 36, 41mpjaodan 956 1 (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  c0 4322   class class class wbr 5149  (class class class)co 7419  0cc0 11140   < clt 11280  cle 11281  0cn0 12505  cz 12591  ..^cfzo 13662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663
This theorem is referenced by:  1arithidomlem2  33348  1arithidom  33349
  Copyright terms: Public domain W3C validator