| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzo0opth | Structured version Visualization version GIF version | ||
| Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13578 and fzoopth 13778. (Contributed by Thierry Arnoux, 27-May-2025.) |
| Ref | Expression |
|---|---|
| fzo0opth.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| fzo0opth.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| fzo0opth | ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12599 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | fzo0opth.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 3 | 2 | nn0zd 12614 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 4 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀) | |
| 5 | fzoopth 13778 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁))) | |
| 6 | 1, 3, 4, 5 | mp3an2ani 1470 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁))) |
| 7 | eqid 2735 | . . . 4 ⊢ 0 = 0 | |
| 8 | 7 | biantrur 530 | . . 3 ⊢ (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁)) |
| 9 | 6, 8 | bitr4di 289 | . 2 ⊢ ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀) | |
| 11 | 10 | oveq2d 7421 | . . . . . 6 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀)) |
| 12 | fzo0 13700 | . . . . . 6 ⊢ (0..^0) = ∅ | |
| 13 | 11, 12 | eqtr3di 2785 | . . . . 5 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅) |
| 14 | 13 | eqeq1d 2737 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁))) |
| 15 | eqcom 2742 | . . . 4 ⊢ (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅) | |
| 16 | 14, 15 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅)) |
| 17 | 0zd 12600 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ) | |
| 18 | fzo0opth.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 19 | 18 | nn0zd 12614 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ) |
| 21 | fzon 13697 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅)) | |
| 22 | 17, 20, 21 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅)) |
| 23 | nn0le0eq0 12529 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0)) | |
| 24 | 23 | biimpa 476 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
| 25 | 18, 24 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
| 26 | 25 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
| 27 | id 22 | . . . . . . 7 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 28 | 0le0 12341 | . . . . . . 7 ⊢ 0 ≤ 0 | |
| 29 | 27, 28 | eqbrtrdi 5158 | . . . . . 6 ⊢ (𝑁 = 0 → 𝑁 ≤ 0) |
| 30 | 29 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0) |
| 31 | 26, 30 | impbida 800 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0)) |
| 32 | eqcom 2742 | . . . . 5 ⊢ (𝑁 = 0 ↔ 0 = 𝑁) | |
| 33 | 32 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁)) |
| 34 | 10 | eqeq1d 2737 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁 ↔ 𝑀 = 𝑁)) |
| 35 | 31, 33, 34 | 3bitrd 305 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁)) |
| 36 | 16, 22, 35 | 3bitr2d 307 | . 2 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
| 37 | 2 | nn0ge0d 12565 | . . 3 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 38 | 0red 11238 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 39 | 2 | nn0red 12563 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 40 | 38, 39 | leloed 11378 | . . 3 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀))) |
| 41 | 37, 40 | mpbid 232 | . 2 ⊢ (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀)) |
| 42 | 9, 36, 41 | mpjaodan 960 | 1 ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∅c0 4308 class class class wbr 5119 (class class class)co 7405 0cc0 11129 < clt 11269 ≤ cle 11270 ℕ0cn0 12501 ℤcz 12588 ..^cfzo 13671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 |
| This theorem is referenced by: 1arithidomlem2 33551 1arithidom 33552 |
| Copyright terms: Public domain | W3C validator |