![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzo0opth | Structured version Visualization version GIF version |
Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13621 and fzoopth 13812. (Contributed by Thierry Arnoux, 27-May-2025.) |
Ref | Expression |
---|---|
fzo0opth.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
fzo0opth.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fzo0opth | ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12650 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | fzo0opth.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
3 | 2 | nn0zd 12665 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀) | |
5 | fzoopth 13812 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁))) | |
6 | 1, 3, 4, 5 | mp3an2ani 1468 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁))) |
7 | eqid 2740 | . . . 4 ⊢ 0 = 0 | |
8 | 7 | biantrur 530 | . . 3 ⊢ (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁)) |
9 | 6, 8 | bitr4di 289 | . 2 ⊢ ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀) | |
11 | 10 | oveq2d 7464 | . . . . . 6 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀)) |
12 | fzo0 13740 | . . . . . 6 ⊢ (0..^0) = ∅ | |
13 | 11, 12 | eqtr3di 2795 | . . . . 5 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅) |
14 | 13 | eqeq1d 2742 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁))) |
15 | eqcom 2747 | . . . 4 ⊢ (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅) | |
16 | 14, 15 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅)) |
17 | 0zd 12651 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ) | |
18 | fzo0opth.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
19 | 18 | nn0zd 12665 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ) |
21 | fzon 13737 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅)) | |
22 | 17, 20, 21 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅)) |
23 | nn0le0eq0 12581 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0)) | |
24 | 23 | biimpa 476 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
25 | 18, 24 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
26 | 25 | adantlr 714 | . . . . 5 ⊢ (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
27 | id 22 | . . . . . . 7 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
28 | 0le0 12394 | . . . . . . 7 ⊢ 0 ≤ 0 | |
29 | 27, 28 | eqbrtrdi 5205 | . . . . . 6 ⊢ (𝑁 = 0 → 𝑁 ≤ 0) |
30 | 29 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0) |
31 | 26, 30 | impbida 800 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0)) |
32 | eqcom 2747 | . . . . 5 ⊢ (𝑁 = 0 ↔ 0 = 𝑁) | |
33 | 32 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁)) |
34 | 10 | eqeq1d 2742 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁 ↔ 𝑀 = 𝑁)) |
35 | 31, 33, 34 | 3bitrd 305 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁)) |
36 | 16, 22, 35 | 3bitr2d 307 | . 2 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
37 | 2 | nn0ge0d 12616 | . . 3 ⊢ (𝜑 → 0 ≤ 𝑀) |
38 | 0red 11293 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
39 | 2 | nn0red 12614 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
40 | 38, 39 | leloed 11433 | . . 3 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀))) |
41 | 37, 40 | mpbid 232 | . 2 ⊢ (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀)) |
42 | 9, 36, 41 | mpjaodan 959 | 1 ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∅c0 4352 class class class wbr 5166 (class class class)co 7448 0cc0 11184 < clt 11324 ≤ cle 11325 ℕ0cn0 12553 ℤcz 12639 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: 1arithidomlem2 33529 1arithidom 33530 |
Copyright terms: Public domain | W3C validator |