| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzo0opth | Structured version Visualization version GIF version | ||
| Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13498 and fzoopth 13699. (Contributed by Thierry Arnoux, 27-May-2025.) |
| Ref | Expression |
|---|---|
| fzo0opth.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| fzo0opth.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| fzo0opth | ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12516 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | fzo0opth.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 3 | 2 | nn0zd 12531 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 4 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀) | |
| 5 | fzoopth 13699 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁))) | |
| 6 | 1, 3, 4, 5 | mp3an2ani 1470 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁))) |
| 7 | eqid 2729 | . . . 4 ⊢ 0 = 0 | |
| 8 | 7 | biantrur 530 | . . 3 ⊢ (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁)) |
| 9 | 6, 8 | bitr4di 289 | . 2 ⊢ ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀) | |
| 11 | 10 | oveq2d 7385 | . . . . . 6 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀)) |
| 12 | fzo0 13620 | . . . . . 6 ⊢ (0..^0) = ∅ | |
| 13 | 11, 12 | eqtr3di 2779 | . . . . 5 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅) |
| 14 | 13 | eqeq1d 2731 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁))) |
| 15 | eqcom 2736 | . . . 4 ⊢ (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅) | |
| 16 | 14, 15 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅)) |
| 17 | 0zd 12517 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ) | |
| 18 | fzo0opth.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 19 | 18 | nn0zd 12531 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ) |
| 21 | fzon 13617 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅)) | |
| 22 | 17, 20, 21 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅)) |
| 23 | nn0le0eq0 12446 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0)) | |
| 24 | 23 | biimpa 476 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
| 25 | 18, 24 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
| 26 | 25 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
| 27 | id 22 | . . . . . . 7 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 28 | 0le0 12263 | . . . . . . 7 ⊢ 0 ≤ 0 | |
| 29 | 27, 28 | eqbrtrdi 5141 | . . . . . 6 ⊢ (𝑁 = 0 → 𝑁 ≤ 0) |
| 30 | 29 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0) |
| 31 | 26, 30 | impbida 800 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0)) |
| 32 | eqcom 2736 | . . . . 5 ⊢ (𝑁 = 0 ↔ 0 = 𝑁) | |
| 33 | 32 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁)) |
| 34 | 10 | eqeq1d 2731 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁 ↔ 𝑀 = 𝑁)) |
| 35 | 31, 33, 34 | 3bitrd 305 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁)) |
| 36 | 16, 22, 35 | 3bitr2d 307 | . 2 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
| 37 | 2 | nn0ge0d 12482 | . . 3 ⊢ (𝜑 → 0 ≤ 𝑀) |
| 38 | 0red 11153 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 39 | 2 | nn0red 12480 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 40 | 38, 39 | leloed 11293 | . . 3 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀))) |
| 41 | 37, 40 | mpbid 232 | . 2 ⊢ (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀)) |
| 42 | 9, 36, 41 | mpjaodan 960 | 1 ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4292 class class class wbr 5102 (class class class)co 7369 0cc0 11044 < clt 11184 ≤ cle 11185 ℕ0cn0 12418 ℤcz 12505 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 |
| This theorem is referenced by: 1arithidomlem2 33480 1arithidom 33481 |
| Copyright terms: Public domain | W3C validator |