Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzo0opth Structured version   Visualization version   GIF version

Theorem fzo0opth 32782
Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13578 and fzoopth 13778. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
fzo0opth.1 (𝜑𝑀 ∈ ℕ0)
fzo0opth.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fzo0opth (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem fzo0opth
StepHypRef Expression
1 0z 12599 . . . 4 0 ∈ ℤ
2 fzo0opth.1 . . . . 5 (𝜑𝑀 ∈ ℕ0)
32nn0zd 12614 . . . 4 (𝜑𝑀 ∈ ℤ)
4 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀)
5 fzoopth 13778 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
61, 3, 4, 5mp3an2ani 1470 . . 3 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
7 eqid 2735 . . . 4 0 = 0
87biantrur 530 . . 3 (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁))
96, 8bitr4di 289 . 2 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
10 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀)
1110oveq2d 7421 . . . . . 6 ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀))
12 fzo0 13700 . . . . . 6 (0..^0) = ∅
1311, 12eqtr3di 2785 . . . . 5 ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅)
1413eqeq1d 2737 . . . 4 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁)))
15 eqcom 2742 . . . 4 (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅)
1614, 15bitrdi 287 . . 3 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅))
17 0zd 12600 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ)
18 fzo0opth.2 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1918nn0zd 12614 . . . . 5 (𝜑𝑁 ∈ ℤ)
2019adantr 480 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ)
21 fzon 13697 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
2217, 20, 21syl2anc 584 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
23 nn0le0eq0 12529 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0))
2423biimpa 476 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ≤ 0) → 𝑁 = 0)
2518, 24sylan 580 . . . . . 6 ((𝜑𝑁 ≤ 0) → 𝑁 = 0)
2625adantlr 715 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0)
27 id 22 . . . . . . 7 (𝑁 = 0 → 𝑁 = 0)
28 0le0 12341 . . . . . . 7 0 ≤ 0
2927, 28eqbrtrdi 5158 . . . . . 6 (𝑁 = 0 → 𝑁 ≤ 0)
3029adantl 481 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0)
3126, 30impbida 800 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0))
32 eqcom 2742 . . . . 5 (𝑁 = 0 ↔ 0 = 𝑁)
3332a1i 11 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁))
3410eqeq1d 2737 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁𝑀 = 𝑁))
3531, 33, 343bitrd 305 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁))
3616, 22, 353bitr2d 307 . 2 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
372nn0ge0d 12565 . . 3 (𝜑 → 0 ≤ 𝑀)
38 0red 11238 . . . 4 (𝜑 → 0 ∈ ℝ)
392nn0red 12563 . . . 4 (𝜑𝑀 ∈ ℝ)
4038, 39leloed 11378 . . 3 (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀)))
4137, 40mpbid 232 . 2 (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀))
429, 36, 41mpjaodan 960 1 (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  c0 4308   class class class wbr 5119  (class class class)co 7405  0cc0 11129   < clt 11269  cle 11270  0cn0 12501  cz 12588  ..^cfzo 13671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672
This theorem is referenced by:  1arithidomlem2  33551  1arithidom  33552
  Copyright terms: Public domain W3C validator