![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzo0opth | Structured version Visualization version GIF version |
Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13573 and fzoopth 13763. (Contributed by Thierry Arnoux, 27-May-2025.) |
Ref | Expression |
---|---|
fzo0opth.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
fzo0opth.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fzo0opth | ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12602 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | fzo0opth.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
3 | 2 | nn0zd 12617 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀) | |
5 | fzoopth 13763 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁))) | |
6 | 1, 3, 4, 5 | mp3an2ani 1464 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁))) |
7 | eqid 2725 | . . . 4 ⊢ 0 = 0 | |
8 | 7 | biantrur 529 | . . 3 ⊢ (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁)) |
9 | 6, 8 | bitr4di 288 | . 2 ⊢ ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
10 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀) | |
11 | 10 | oveq2d 7435 | . . . . . 6 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀)) |
12 | fzo0 13691 | . . . . . 6 ⊢ (0..^0) = ∅ | |
13 | 11, 12 | eqtr3di 2780 | . . . . 5 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅) |
14 | 13 | eqeq1d 2727 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁))) |
15 | eqcom 2732 | . . . 4 ⊢ (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅) | |
16 | 14, 15 | bitrdi 286 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅)) |
17 | 0zd 12603 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ) | |
18 | fzo0opth.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
19 | 18 | nn0zd 12617 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | 19 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ) |
21 | fzon 13688 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅)) | |
22 | 17, 20, 21 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅)) |
23 | nn0le0eq0 12533 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0)) | |
24 | 23 | biimpa 475 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
25 | 18, 24 | sylan 578 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
26 | 25 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0) |
27 | id 22 | . . . . . . 7 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
28 | 0le0 12346 | . . . . . . 7 ⊢ 0 ≤ 0 | |
29 | 27, 28 | eqbrtrdi 5188 | . . . . . 6 ⊢ (𝑁 = 0 → 𝑁 ≤ 0) |
30 | 29 | adantl 480 | . . . . 5 ⊢ (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0) |
31 | 26, 30 | impbida 799 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0)) |
32 | eqcom 2732 | . . . . 5 ⊢ (𝑁 = 0 ↔ 0 = 𝑁) | |
33 | 32 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁)) |
34 | 10 | eqeq1d 2727 | . . . 4 ⊢ ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁 ↔ 𝑀 = 𝑁)) |
35 | 31, 33, 34 | 3bitrd 304 | . . 3 ⊢ ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁)) |
36 | 16, 22, 35 | 3bitr2d 306 | . 2 ⊢ ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
37 | 2 | nn0ge0d 12568 | . . 3 ⊢ (𝜑 → 0 ≤ 𝑀) |
38 | 0red 11249 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
39 | 2 | nn0red 12566 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
40 | 38, 39 | leloed 11389 | . . 3 ⊢ (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀))) |
41 | 37, 40 | mpbid 231 | . 2 ⊢ (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀)) |
42 | 9, 36, 41 | mpjaodan 956 | 1 ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∅c0 4322 class class class wbr 5149 (class class class)co 7419 0cc0 11140 < clt 11280 ≤ cle 11281 ℕ0cn0 12505 ℤcz 12591 ..^cfzo 13662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 |
This theorem is referenced by: 1arithidomlem2 33348 1arithidom 33349 |
Copyright terms: Public domain | W3C validator |