Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzo0opth Structured version   Visualization version   GIF version

Theorem fzo0opth 32728
Description: Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13522 and fzoopth 13723. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
fzo0opth.1 (𝜑𝑀 ∈ ℕ0)
fzo0opth.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fzo0opth (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem fzo0opth
StepHypRef Expression
1 0z 12540 . . . 4 0 ∈ ℤ
2 fzo0opth.1 . . . . 5 (𝜑𝑀 ∈ ℕ0)
32nn0zd 12555 . . . 4 (𝜑𝑀 ∈ ℤ)
4 simpr 484 . . . 4 ((𝜑 ∧ 0 < 𝑀) → 0 < 𝑀)
5 fzoopth 13723 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
61, 3, 4, 5mp3an2ani 1470 . . 3 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
7 eqid 2729 . . . 4 0 = 0
87biantrur 530 . . 3 (𝑀 = 𝑁 ↔ (0 = 0 ∧ 𝑀 = 𝑁))
96, 8bitr4di 289 . 2 ((𝜑 ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
10 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 = 𝑀) → 0 = 𝑀)
1110oveq2d 7403 . . . . . 6 ((𝜑 ∧ 0 = 𝑀) → (0..^0) = (0..^𝑀))
12 fzo0 13644 . . . . . 6 (0..^0) = ∅
1311, 12eqtr3di 2779 . . . . 5 ((𝜑 ∧ 0 = 𝑀) → (0..^𝑀) = ∅)
1413eqeq1d 2731 . . . 4 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ ∅ = (0..^𝑁)))
15 eqcom 2736 . . . 4 (∅ = (0..^𝑁) ↔ (0..^𝑁) = ∅)
1614, 15bitrdi 287 . . 3 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0..^𝑁) = ∅))
17 0zd 12541 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 0 ∈ ℤ)
18 fzo0opth.2 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1918nn0zd 12555 . . . . 5 (𝜑𝑁 ∈ ℤ)
2019adantr 480 . . . 4 ((𝜑 ∧ 0 = 𝑀) → 𝑁 ∈ ℤ)
21 fzon 13641 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
2217, 20, 21syl2anc 584 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
23 nn0le0eq0 12470 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ 𝑁 = 0))
2423biimpa 476 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ≤ 0) → 𝑁 = 0)
2518, 24sylan 580 . . . . . 6 ((𝜑𝑁 ≤ 0) → 𝑁 = 0)
2625adantlr 715 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 ≤ 0) → 𝑁 = 0)
27 id 22 . . . . . . 7 (𝑁 = 0 → 𝑁 = 0)
28 0le0 12287 . . . . . . 7 0 ≤ 0
2927, 28eqbrtrdi 5146 . . . . . 6 (𝑁 = 0 → 𝑁 ≤ 0)
3029adantl 481 . . . . 5 (((𝜑 ∧ 0 = 𝑀) ∧ 𝑁 = 0) → 𝑁 ≤ 0)
3126, 30impbida 800 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑁 = 0))
32 eqcom 2736 . . . . 5 (𝑁 = 0 ↔ 0 = 𝑁)
3332a1i 11 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (𝑁 = 0 ↔ 0 = 𝑁))
3410eqeq1d 2731 . . . 4 ((𝜑 ∧ 0 = 𝑀) → (0 = 𝑁𝑀 = 𝑁))
3531, 33, 343bitrd 305 . . 3 ((𝜑 ∧ 0 = 𝑀) → (𝑁 ≤ 0 ↔ 𝑀 = 𝑁))
3616, 22, 353bitr2d 307 . 2 ((𝜑 ∧ 0 = 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
372nn0ge0d 12506 . . 3 (𝜑 → 0 ≤ 𝑀)
38 0red 11177 . . . 4 (𝜑 → 0 ∈ ℝ)
392nn0red 12504 . . . 4 (𝜑𝑀 ∈ ℝ)
4038, 39leloed 11317 . . 3 (𝜑 → (0 ≤ 𝑀 ↔ (0 < 𝑀 ∨ 0 = 𝑀)))
4137, 40mpbid 232 . 2 (𝜑 → (0 < 𝑀 ∨ 0 = 𝑀))
429, 36, 41mpjaodan 960 1 (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  c0 4296   class class class wbr 5107  (class class class)co 7387  0cc0 11068   < clt 11208  cle 11209  0cn0 12442  cz 12529  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  1arithidomlem2  33507  1arithidom  33508
  Copyright terms: Public domain W3C validator