Proof of Theorem gpgiedgdmellem
| Step | Hyp | Ref
| Expression |
| 1 | | prex 5407 |
. . . . . 6
⊢ {〈0,
𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∈ V |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∈ V) |
| 3 | | c0ex 11227 |
. . . . . . . . 9
⊢ 0 ∈
V |
| 4 | 3 | prid1 4738 |
. . . . . . . 8
⊢ 0 ∈
{0, 1} |
| 5 | 4 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 0 ∈ {0, 1}) |
| 6 | | simpr 484 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
| 7 | 5, 6 | opelxpd 5693 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 〈0, 𝑥〉 ∈ ({0, 1} × 𝐼)) |
| 8 | | elfzoelz 13674 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ) |
| 9 | | gpgvtxel.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (0..^𝑁) |
| 10 | 8, 9 | eleq2s 2852 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐼 → 𝑥 ∈ ℤ) |
| 11 | 10 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ ℤ) |
| 12 | 11 | peano2zd 12698 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑥 + 1) ∈ ℤ) |
| 13 | | simpll 766 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑁 ∈ ℕ) |
| 14 | | zmodfzo 13909 |
. . . . . . . . 9
⊢ (((𝑥 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑥 + 1) mod 𝑁) ∈ (0..^𝑁)) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑥 + 1) mod 𝑁) ∈ (0..^𝑁)) |
| 16 | 15, 9 | eleqtrrdi 2845 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑥 + 1) mod 𝑁) ∈ 𝐼) |
| 17 | 5, 16 | opelxpd 5693 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 〈0, ((𝑥 + 1) mod 𝑁)〉 ∈ ({0, 1} × 𝐼)) |
| 18 | 7, 17 | prssd 4798 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ⊆ ({0, 1} × 𝐼)) |
| 19 | 2, 18 | elpwd 4581 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∈ 𝒫 ({0, 1} ×
𝐼)) |
| 20 | | eleq1 2822 |
. . . 4
⊢ (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∈ 𝒫 ({0, 1} ×
𝐼))) |
| 21 | 19, 20 | syl5ibrcom 247 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
| 22 | | prex 5407 |
. . . . . 6
⊢ {〈0,
𝑥〉, 〈1, 𝑥〉} ∈
V |
| 23 | 22 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈1, 𝑥〉} ∈ V) |
| 24 | | 1ex 11229 |
. . . . . . . . 9
⊢ 1 ∈
V |
| 25 | 24 | prid2 4739 |
. . . . . . . 8
⊢ 1 ∈
{0, 1} |
| 26 | 25 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 1 ∈ {0, 1}) |
| 27 | 26, 6 | opelxpd 5693 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 〈1, 𝑥〉 ∈ ({0, 1} × 𝐼)) |
| 28 | 7, 27 | prssd 4798 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈1, 𝑥〉} ⊆ ({0, 1} × 𝐼)) |
| 29 | 23, 28 | elpwd 4581 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈1, 𝑥〉} ∈ 𝒫 ({0, 1} ×
𝐼)) |
| 30 | | eleq1 2822 |
. . . 4
⊢ (𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {〈0, 𝑥〉, 〈1, 𝑥〉} ∈ 𝒫 ({0, 1}
× 𝐼))) |
| 31 | 29, 30 | syl5ibrcom 247 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
| 32 | | prex 5407 |
. . . . . 6
⊢ {〈1,
𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ∈ V |
| 33 | 32 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ∈ V) |
| 34 | | elfzoelz 13674 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈
(1..^(⌈‘(𝑁 /
2))) → 𝐾 ∈
ℤ) |
| 35 | | gpgvtxel.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| 36 | 34, 35 | eleq2s 2852 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ) |
| 37 | 36 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝐾 ∈ ℤ) |
| 38 | 11, 37 | zaddcld 12699 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑥 + 𝐾) ∈ ℤ) |
| 39 | | zmodfzo 13909 |
. . . . . . . . 9
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑥 + 𝐾) mod 𝑁) ∈ (0..^𝑁)) |
| 40 | 38, 13, 39 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑥 + 𝐾) mod 𝑁) ∈ (0..^𝑁)) |
| 41 | 40, 9 | eleqtrrdi 2845 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑥 + 𝐾) mod 𝑁) ∈ 𝐼) |
| 42 | 26, 41 | opelxpd 5693 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 〈1, ((𝑥 + 𝐾) mod 𝑁)〉 ∈ ({0, 1} × 𝐼)) |
| 43 | 27, 42 | prssd 4798 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ⊆ ({0, 1} × 𝐼)) |
| 44 | 33, 43 | elpwd 4581 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ∈ 𝒫 ({0, 1} ×
𝐼)) |
| 45 | | eleq1 2822 |
. . . 4
⊢ (𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ∈ 𝒫 ({0, 1} ×
𝐼))) |
| 46 | 44, 45 | syl5ibrcom 247 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
| 47 | 21, 31, 46 | 3jaod 1431 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
| 48 | 47 | rexlimdva 3141 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |