![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zmodfzo | Structured version Visualization version GIF version |
Description: An integer mod 𝐵 lies in the first 𝐵 nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
zmodfzo | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmodfz 13899 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0...(𝐵 − 1))) | |
2 | nnz 12617 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
3 | fzoval 13673 | . . . 4 ⊢ (𝐵 ∈ ℤ → (0..^𝐵) = (0...(𝐵 − 1))) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐵 ∈ ℕ → (0..^𝐵) = (0...(𝐵 − 1))) |
5 | 4 | adantl 480 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (0..^𝐵) = (0...(𝐵 − 1))) |
6 | 1, 5 | eleqtrrd 2828 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 mod 𝐵) ∈ (0..^𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 (class class class)co 7419 0cc0 11145 1c1 11146 − cmin 11481 ℕcn 12250 ℤcz 12596 ...cfz 13524 ..^cfzo 13667 mod cmo 13875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9472 df-inf 9473 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-fl 13798 df-mod 13876 |
This theorem is referenced by: zmodfzp1 13901 cshwidxmodr 14795 cshf1 14801 2cshw 14804 cshweqrep 14812 cshco 14828 crth 16755 phimullem 16756 eulerthlem1 16758 modprm0 16782 modprmn0modprm0 16784 odf1o2 19545 znf1o 21507 dchrisumlem1 27472 clwwisshclwwslemlem 29900 cshwrnid 32776 remexz 41709 elmod2 46849 modn0mul 47781 nnpw2p 47847 |
Copyright terms: Public domain | W3C validator |