Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgedgel Structured version   Visualization version   GIF version

Theorem gpgedgel 48212
Description: An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) (Proof shortened by AV, 8-Nov-2025.)
Hypotheses
Ref Expression
gpgvtxel.i 𝐼 = (0..^𝑁)
gpgvtxel.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgvtxel.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgedgel ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸 ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝑁   𝑥,𝑌
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem gpgedgel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 gpgedgel.e . . . . 5 𝐸 = (Edg‘𝐺)
2 gpgvtxel.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
32fveq2i 6834 . . . . 5 (Edg‘𝐺) = (Edg‘(𝑁 gPetersenGr 𝐾))
41, 3eqtri 2756 . . . 4 𝐸 = (Edg‘(𝑁 gPetersenGr 𝐾))
54eleq2i 2825 . . 3 (𝑌𝐸𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)))
6 eluz3nn 12793 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
7 gpgvtxel.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
8 gpgvtxel.i . . . . . 6 𝐼 = (0..^𝑁)
97, 8gpgedg 48207 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
106, 9sylan 580 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
1110eleq2d 2819 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)) ↔ 𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
125, 11bitrid 283 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
13 eqeq1 2737 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
14 eqeq1 2737 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}))
15 eqeq1 2737 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
1613, 14, 153orbi123d 1437 . . . . 5 (𝑒 = 𝑌 → ((𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
1716rexbidv 3157 . . . 4 (𝑒 = 𝑌 → (∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
1817elrab 3643 . . 3 (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
196anim1i 615 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑁 ∈ ℕ ∧ 𝐾𝐽))
208, 7gpgiedgdmellem 48208 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
2119, 20syl 17 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
2221pm4.71rd 562 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))))
2318, 22bitr4id 290 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
2412, 23bitrd 279 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸 ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  𝒫 cpw 4551  {cpr 4579  cop 4583   × cxp 5619  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020   / cdiv 11785  cn 12136  2c2 12191  3c3 12192  cuz 12742  ..^cfzo 13561  cceil 13702   mod cmo 13780  Edgcedg 29046   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-hash 14245  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-iedg 28998  df-edg 29047  df-gpg 48203
This theorem is referenced by:  gpgedgvtx0  48223  gpgedgvtx1  48224  gpgvtxedg0  48225  gpgvtxedg1  48226  gpgedgiov  48227  gpg5nbgrvtx03starlem1  48230  gpg5nbgrvtx03starlem2  48231  gpg5nbgrvtx03starlem3  48232  gpg5nbgrvtx13starlem1  48233  gpg5nbgrvtx13starlem2  48234  gpg5nbgrvtx13starlem3  48235  gpg3kgrtriexlem6  48250  gpg5edgnedg  48292
  Copyright terms: Public domain W3C validator