Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgedgel Structured version   Visualization version   GIF version

Theorem gpgedgel 47897
Description: An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.)
Hypotheses
Ref Expression
gpgvtxel.i 𝐼 = (0..^𝑁)
gpgvtxel.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgvtxel.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgedgel ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸 ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝑁   𝑥,𝑌
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem gpgedgel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 gpgedgel.e . . . . 5 𝐸 = (Edg‘𝐺)
2 gpgvtxel.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
32fveq2i 6926 . . . . 5 (Edg‘𝐺) = (Edg‘(𝑁 gPetersenGr 𝐾))
41, 3eqtri 2768 . . . 4 𝐸 = (Edg‘(𝑁 gPetersenGr 𝐾))
54eleq2i 2836 . . 3 (𝑌𝐸𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)))
6 eluzge3nn 12964 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
7 gpgvtxel.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
8 gpgvtxel.i . . . . . 6 𝐼 = (0..^𝑁)
97, 8gpgedg 47894 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
106, 9sylan 579 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
1110eleq2d 2830 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)) ↔ 𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
125, 11bitrid 283 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
13 eqeq1 2744 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
14 eqeq1 2744 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}))
15 eqeq1 2744 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
1613, 14, 153orbi123d 1435 . . . . 5 (𝑒 = 𝑌 → ((𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
1716rexbidv 3185 . . . 4 (𝑒 = 𝑌 → (∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
1817elrab 3708 . . 3 (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
19 prex 5453 . . . . . . . . 9 {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∈ V
2019a1i 11 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∈ V)
21 c0ex 11287 . . . . . . . . . . . 12 0 ∈ V
2221prid1 4787 . . . . . . . . . . 11 0 ∈ {0, 1}
2322a1i 11 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 0 ∈ {0, 1})
24 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 𝑥𝐼)
2523, 24opelxpd 5740 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ⟨0, 𝑥⟩ ∈ ({0, 1} × 𝐼))
26 elfzoelz 13727 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
2726, 8eleq2s 2862 . . . . . . . . . . . . . 14 (𝑥𝐼𝑥 ∈ ℤ)
2827adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 𝑥 ∈ ℤ)
2928peano2zd 12757 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑥 + 1) ∈ ℤ)
306adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝑁 ∈ ℕ)
3130adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 𝑁 ∈ ℕ)
32 zmodfzo 13961 . . . . . . . . . . . 12 (((𝑥 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑥 + 1) mod 𝑁) ∈ (0..^𝑁))
3329, 31, 32syl2anc 583 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑥 + 1) mod 𝑁) ∈ (0..^𝑁))
3433, 8eleqtrrdi 2855 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑥 + 1) mod 𝑁) ∈ 𝐼)
3523, 34opelxpd 5740 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ ({0, 1} × 𝐼))
3625, 35prssd 4847 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ⊆ ({0, 1} × 𝐼))
3720, 36elpwd 4628 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∈ 𝒫 ({0, 1} × 𝐼))
38 eleq1 2832 . . . . . . 7 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∈ 𝒫 ({0, 1} × 𝐼)))
3937, 38syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
40 prex 5453 . . . . . . . . 9 {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∈ V
4140a1i 11 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∈ V)
42 1ex 11289 . . . . . . . . . . . 12 1 ∈ V
4342prid2 4788 . . . . . . . . . . 11 1 ∈ {0, 1}
4443a1i 11 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 1 ∈ {0, 1})
4544, 24opelxpd 5740 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ⟨1, 𝑥⟩ ∈ ({0, 1} × 𝐼))
4625, 45prssd 4847 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ⊆ ({0, 1} × 𝐼))
4741, 46elpwd 4628 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∈ 𝒫 ({0, 1} × 𝐼))
48 eleq1 2832 . . . . . . 7 (𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∈ 𝒫 ({0, 1} × 𝐼)))
4947, 48syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
50 prex 5453 . . . . . . . . 9 {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ∈ V
5150a1i 11 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ∈ V)
52 elfzoelz 13727 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ)
5352, 7eleq2s 2862 . . . . . . . . . . . . . . 15 (𝐾𝐽𝐾 ∈ ℤ)
5453adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐾 ∈ ℤ)
5554adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 𝐾 ∈ ℤ)
5628, 55zaddcld 12758 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑥 + 𝐾) ∈ ℤ)
57 zmodfzo 13961 . . . . . . . . . . . 12 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑥 + 𝐾) mod 𝑁) ∈ (0..^𝑁))
5856, 31, 57syl2anc 583 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑥 + 𝐾) mod 𝑁) ∈ (0..^𝑁))
5958, 8eleqtrrdi 2855 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑥 + 𝐾) mod 𝑁) ∈ 𝐼)
6044, 59opelxpd 5740 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × 𝐼))
6145, 60prssd 4847 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ⊆ ({0, 1} × 𝐼))
6251, 61elpwd 4628 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ∈ 𝒫 ({0, 1} × 𝐼))
63 eleq1 2832 . . . . . . 7 (𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ∈ 𝒫 ({0, 1} × 𝐼)))
6462, 63syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
6539, 49, 643jaod 1429 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
6665rexlimdva 3161 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
6766pm4.71rd 562 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))))
6818, 67bitr4id 290 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
6912, 68bitrd 279 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸 ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  𝒫 cpw 4622  {cpr 4650  cop 4654   × cxp 5699  cfv 6576  (class class class)co 7451  0cc0 11187  1c1 11188   + caddc 11190   / cdiv 11952  cn 12298  2c2 12353  3c3 12354  cz 12645  cuz 12910  ..^cfzo 13722  cceil 13858   mod cmo 13936  Edgcedg 29102   gPetersenGr cgpg 47889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5304  ax-sep 5318  ax-nul 5325  ax-pow 5384  ax-pr 5448  ax-un 7773  ax-cnex 11243  ax-resscn 11244  ax-1cn 11245  ax-icn 11246  ax-addcl 11247  ax-addrcl 11248  ax-mulcl 11249  ax-mulrcl 11250  ax-mulcom 11251  ax-addass 11252  ax-mulass 11253  ax-distr 11254  ax-i2m1 11255  ax-1ne0 11256  ax-1rid 11257  ax-rnegex 11258  ax-rrecex 11259  ax-cnre 11260  ax-pre-lttri 11261  ax-pre-lttrn 11262  ax-pre-ltadd 11263  ax-pre-mulgt0 11264  ax-pre-sup 11265
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4933  df-int 4972  df-iun 5018  df-br 5168  df-opab 5230  df-mpt 5251  df-tr 5285  df-id 5594  df-eprel 5600  df-po 5608  df-so 5609  df-fr 5653  df-we 5655  df-xp 5707  df-rel 5708  df-cnv 5709  df-co 5710  df-dm 5711  df-rn 5712  df-res 5713  df-ima 5714  df-pred 6335  df-ord 6401  df-on 6402  df-lim 6403  df-suc 6404  df-iota 6528  df-fun 6578  df-fn 6579  df-f 6580  df-f1 6581  df-fo 6582  df-f1o 6583  df-fv 6584  df-riota 7407  df-ov 7454  df-oprab 7455  df-mpo 7456  df-om 7907  df-1st 8033  df-2nd 8034  df-frecs 8325  df-wrecs 8356  df-recs 8430  df-rdg 8469  df-1o 8525  df-oadd 8529  df-er 8766  df-en 9007  df-dom 9008  df-sdom 9009  df-fin 9010  df-sup 9514  df-inf 9515  df-dju 9973  df-card 10011  df-pnf 11329  df-mnf 11330  df-xr 11331  df-ltxr 11332  df-le 11333  df-sub 11526  df-neg 11527  df-div 11953  df-nn 12299  df-2 12361  df-3 12362  df-4 12363  df-5 12364  df-6 12365  df-7 12366  df-8 12367  df-9 12368  df-n0 12559  df-xnn0 12632  df-z 12646  df-dec 12766  df-uz 12911  df-rp 13067  df-fz 13579  df-fzo 13723  df-fl 13859  df-mod 13937  df-hash 14397  df-struct 17214  df-slot 17249  df-ndx 17261  df-base 17279  df-edgf 29042  df-iedg 29054  df-edg 29103  df-gpg 47890
This theorem is referenced by:  gpgedgvtx0  47906  gpgedgvtx1  47907  gpgvtxedg0  47908  gpgvtxedg1  47909  gpg5nbgrvtx03starlem1  47911  gpg5nbgrvtx03starlem2  47912  gpg5nbgrvtx03starlem3  47913  gpg5nbgrvtx13starlem1  47914  gpg5nbgrvtx13starlem2  47915  gpg5nbgrvtx13starlem3  47916
  Copyright terms: Public domain W3C validator