Step | Hyp | Ref
| Expression |
1 | | gpgedgel.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
2 | | gpgvtxel.g |
. . . . . 6
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
3 | 2 | fveq2i 6926 |
. . . . 5
⊢
(Edg‘𝐺) =
(Edg‘(𝑁 gPetersenGr
𝐾)) |
4 | 1, 3 | eqtri 2768 |
. . . 4
⊢ 𝐸 = (Edg‘(𝑁 gPetersenGr 𝐾)) |
5 | 4 | eleq2i 2836 |
. . 3
⊢ (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾))) |
6 | | eluzge3nn 12964 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
7 | | gpgvtxel.j |
. . . . . 6
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
8 | | gpgvtxel.i |
. . . . . 6
⊢ 𝐼 = (0..^𝑁) |
9 | 7, 8 | gpgedg 47894 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) |
10 | 6, 9 | sylan 579 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) |
11 | 10 | eleq2d 2830 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)) ↔ 𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) |
12 | 5, 11 | bitrid 283 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) |
13 | | eqeq1 2744 |
. . . . . 6
⊢ (𝑒 = 𝑌 → (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ↔ 𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉})) |
14 | | eqeq1 2744 |
. . . . . 6
⊢ (𝑒 = 𝑌 → (𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ↔ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉})) |
15 | | eqeq1 2744 |
. . . . . 6
⊢ (𝑒 = 𝑌 → (𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ↔ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})) |
16 | 13, 14, 15 | 3orbi123d 1435 |
. . . . 5
⊢ (𝑒 = 𝑌 → ((𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
17 | 16 | rexbidv 3185 |
. . . 4
⊢ (𝑒 = 𝑌 → (∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
18 | 17 | elrab 3708 |
. . 3
⊢ (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
19 | | prex 5453 |
. . . . . . . . 9
⊢ {〈0,
𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∈ V |
20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∈ V) |
21 | | c0ex 11287 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
22 | 21 | prid1 4787 |
. . . . . . . . . . 11
⊢ 0 ∈
{0, 1} |
23 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 0 ∈ {0, 1}) |
24 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
25 | 23, 24 | opelxpd 5740 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 〈0, 𝑥〉 ∈ ({0, 1} × 𝐼)) |
26 | | elfzoelz 13727 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ) |
27 | 26, 8 | eleq2s 2862 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐼 → 𝑥 ∈ ℤ) |
28 | 27 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ ℤ) |
29 | 28 | peano2zd 12757 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑥 + 1) ∈ ℤ) |
30 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 𝑁 ∈ ℕ) |
31 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑁 ∈ ℕ) |
32 | | zmodfzo 13961 |
. . . . . . . . . . . 12
⊢ (((𝑥 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑥 + 1) mod 𝑁) ∈ (0..^𝑁)) |
33 | 29, 31, 32 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑥 + 1) mod 𝑁) ∈ (0..^𝑁)) |
34 | 33, 8 | eleqtrrdi 2855 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑥 + 1) mod 𝑁) ∈ 𝐼) |
35 | 23, 34 | opelxpd 5740 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 〈0, ((𝑥 + 1) mod 𝑁)〉 ∈ ({0, 1} × 𝐼)) |
36 | 25, 35 | prssd 4847 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ⊆ ({0, 1} × 𝐼)) |
37 | 20, 36 | elpwd 4628 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∈ 𝒫 ({0, 1} ×
𝐼)) |
38 | | eleq1 2832 |
. . . . . . 7
⊢ (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∈ 𝒫 ({0, 1} ×
𝐼))) |
39 | 37, 38 | syl5ibrcom 247 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
40 | | prex 5453 |
. . . . . . . . 9
⊢ {〈0,
𝑥〉, 〈1, 𝑥〉} ∈
V |
41 | 40 | a1i 11 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈1, 𝑥〉} ∈ V) |
42 | | 1ex 11289 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
43 | 42 | prid2 4788 |
. . . . . . . . . . 11
⊢ 1 ∈
{0, 1} |
44 | 43 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 1 ∈ {0, 1}) |
45 | 44, 24 | opelxpd 5740 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 〈1, 𝑥〉 ∈ ({0, 1} × 𝐼)) |
46 | 25, 45 | prssd 4847 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈1, 𝑥〉} ⊆ ({0, 1} × 𝐼)) |
47 | 41, 46 | elpwd 4628 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈0, 𝑥〉, 〈1, 𝑥〉} ∈ 𝒫 ({0, 1} ×
𝐼)) |
48 | | eleq1 2832 |
. . . . . . 7
⊢ (𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {〈0, 𝑥〉, 〈1, 𝑥〉} ∈ 𝒫 ({0, 1}
× 𝐼))) |
49 | 47, 48 | syl5ibrcom 247 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
50 | | prex 5453 |
. . . . . . . . 9
⊢ {〈1,
𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ∈ V |
51 | 50 | a1i 11 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ∈ V) |
52 | | elfzoelz 13727 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈
(1..^(⌈‘(𝑁 /
2))) → 𝐾 ∈
ℤ) |
53 | 52, 7 | eleq2s 2862 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ ℤ) |
54 | 53 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → 𝐾 ∈ ℤ) |
55 | 54 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝐾 ∈ ℤ) |
56 | 28, 55 | zaddcld 12758 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑥 + 𝐾) ∈ ℤ) |
57 | | zmodfzo 13961 |
. . . . . . . . . . . 12
⊢ (((𝑥 + 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑥 + 𝐾) mod 𝑁) ∈ (0..^𝑁)) |
58 | 56, 31, 57 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑥 + 𝐾) mod 𝑁) ∈ (0..^𝑁)) |
59 | 58, 8 | eleqtrrdi 2855 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑥 + 𝐾) mod 𝑁) ∈ 𝐼) |
60 | 44, 59 | opelxpd 5740 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 〈1, ((𝑥 + 𝐾) mod 𝑁)〉 ∈ ({0, 1} × 𝐼)) |
61 | 45, 60 | prssd 4847 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ⊆ ({0, 1} × 𝐼)) |
62 | 51, 61 | elpwd 4628 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ∈ 𝒫 ({0, 1} ×
𝐼)) |
63 | | eleq1 2832 |
. . . . . . 7
⊢ (𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ∈ 𝒫 ({0, 1} ×
𝐼))) |
64 | 62, 63 | syl5ibrcom 247 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → (𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
65 | 39, 49, 64 | 3jaod 1429 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → ((𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
66 | 65 | rexlimdva 3161 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
67 | 66 | pm4.71rd 562 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})))) |
68 | 18, 67 | bitr4id 290 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
69 | 12, 68 | bitrd 279 |
1
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |