| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgedgel | Structured version Visualization version GIF version | ||
| Description: An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) (Proof shortened by AV, 8-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpgvtxel.i | ⊢ 𝐼 = (0..^𝑁) |
| gpgvtxel.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| gpgvtxel.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| gpgedgel.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| gpgedgel | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgedgel.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | gpgvtxel.g | . . . . . 6 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 3 | 2 | fveq2i 6863 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘(𝑁 gPetersenGr 𝐾)) |
| 4 | 1, 3 | eqtri 2753 | . . . 4 ⊢ 𝐸 = (Edg‘(𝑁 gPetersenGr 𝐾)) |
| 5 | 4 | eleq2i 2821 | . . 3 ⊢ (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾))) |
| 6 | eluz3nn 12854 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 7 | gpgvtxel.j | . . . . . 6 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 8 | gpgvtxel.i | . . . . . 6 ⊢ 𝐼 = (0..^𝑁) | |
| 9 | 7, 8 | gpgedg 48026 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) |
| 10 | 6, 9 | sylan 580 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) |
| 11 | 10 | eleq2d 2815 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)) ↔ 𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) |
| 12 | 5, 11 | bitrid 283 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) |
| 13 | eqeq1 2734 | . . . . . 6 ⊢ (𝑒 = 𝑌 → (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ↔ 𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉})) | |
| 14 | eqeq1 2734 | . . . . . 6 ⊢ (𝑒 = 𝑌 → (𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ↔ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉})) | |
| 15 | eqeq1 2734 | . . . . . 6 ⊢ (𝑒 = 𝑌 → (𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ↔ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})) | |
| 16 | 13, 14, 15 | 3orbi123d 1437 | . . . . 5 ⊢ (𝑒 = 𝑌 → ((𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
| 17 | 16 | rexbidv 3158 | . . . 4 ⊢ (𝑒 = 𝑌 → (∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
| 18 | 17 | elrab 3661 | . . 3 ⊢ (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
| 19 | 6 | anim1i 615 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽)) |
| 20 | 8, 7 | gpgiedgdmellem 48027 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) |
| 22 | 21 | pm4.71rd 562 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})))) |
| 23 | 18, 22 | bitr4id 290 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})} ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
| 24 | 12, 23 | bitrd 279 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑌 ∈ 𝐸 ↔ ∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 𝒫 cpw 4565 {cpr 4593 〈cop 4597 × cxp 5638 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 + caddc 11077 / cdiv 11841 ℕcn 12187 2c2 12242 3c3 12243 ℤ≥cuz 12799 ..^cfzo 13621 ⌈cceil 13759 mod cmo 13837 Edgcedg 28980 gPetersenGr cgpg 48021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-oadd 8440 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-fl 13760 df-mod 13838 df-hash 14302 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-edgf 28922 df-iedg 28932 df-edg 28981 df-gpg 48022 |
| This theorem is referenced by: gpgedgvtx0 48042 gpgedgvtx1 48043 gpgvtxedg0 48044 gpgvtxedg1 48045 gpgedgiov 48046 gpg5nbgrvtx03starlem1 48049 gpg5nbgrvtx03starlem2 48050 gpg5nbgrvtx03starlem3 48051 gpg5nbgrvtx13starlem1 48052 gpg5nbgrvtx13starlem2 48053 gpg5nbgrvtx13starlem3 48054 gpg3kgrtriexlem6 48069 |
| Copyright terms: Public domain | W3C validator |