Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgedgel Structured version   Visualization version   GIF version

Theorem gpgedgel 47980
Description: An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.)
Hypotheses
Ref Expression
gpgvtxel.i 𝐼 = (0..^𝑁)
gpgvtxel.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgvtxel.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgedgel ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸 ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝑁   𝑥,𝑌
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem gpgedgel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 gpgedgel.e . . . . 5 𝐸 = (Edg‘𝐺)
2 gpgvtxel.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
32fveq2i 6889 . . . . 5 (Edg‘𝐺) = (Edg‘(𝑁 gPetersenGr 𝐾))
41, 3eqtri 2757 . . . 4 𝐸 = (Edg‘(𝑁 gPetersenGr 𝐾))
54eleq2i 2825 . . 3 (𝑌𝐸𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)))
6 eluzge3nn 12914 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
7 gpgvtxel.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
8 gpgvtxel.i . . . . . 6 𝐼 = (0..^𝑁)
97, 8gpgedg 47977 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
106, 9sylan 580 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
1110eleq2d 2819 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)) ↔ 𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
125, 11bitrid 283 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
13 eqeq1 2738 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
14 eqeq1 2738 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}))
15 eqeq1 2738 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
1613, 14, 153orbi123d 1436 . . . . 5 (𝑒 = 𝑌 → ((𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
1716rexbidv 3166 . . . 4 (𝑒 = 𝑌 → (∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
1817elrab 3675 . . 3 (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
19 prex 5417 . . . . . . . . 9 {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∈ V
2019a1i 11 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∈ V)
21 c0ex 11237 . . . . . . . . . . . 12 0 ∈ V
2221prid1 4742 . . . . . . . . . . 11 0 ∈ {0, 1}
2322a1i 11 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 0 ∈ {0, 1})
24 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 𝑥𝐼)
2523, 24opelxpd 5704 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ⟨0, 𝑥⟩ ∈ ({0, 1} × 𝐼))
26 elfzoelz 13681 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
2726, 8eleq2s 2851 . . . . . . . . . . . . . 14 (𝑥𝐼𝑥 ∈ ℤ)
2827adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 𝑥 ∈ ℤ)
2928peano2zd 12708 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑥 + 1) ∈ ℤ)
306adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝑁 ∈ ℕ)
3130adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 𝑁 ∈ ℕ)
32 zmodfzo 13916 . . . . . . . . . . . 12 (((𝑥 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑥 + 1) mod 𝑁) ∈ (0..^𝑁))
3329, 31, 32syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑥 + 1) mod 𝑁) ∈ (0..^𝑁))
3433, 8eleqtrrdi 2844 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑥 + 1) mod 𝑁) ∈ 𝐼)
3523, 34opelxpd 5704 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ ({0, 1} × 𝐼))
3625, 35prssd 4802 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ⊆ ({0, 1} × 𝐼))
3720, 36elpwd 4586 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∈ 𝒫 ({0, 1} × 𝐼))
38 eleq1 2821 . . . . . . 7 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∈ 𝒫 ({0, 1} × 𝐼)))
3937, 38syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
40 prex 5417 . . . . . . . . 9 {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∈ V
4140a1i 11 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∈ V)
42 1ex 11239 . . . . . . . . . . . 12 1 ∈ V
4342prid2 4743 . . . . . . . . . . 11 1 ∈ {0, 1}
4443a1i 11 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 1 ∈ {0, 1})
4544, 24opelxpd 5704 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ⟨1, 𝑥⟩ ∈ ({0, 1} × 𝐼))
4625, 45prssd 4802 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ⊆ ({0, 1} × 𝐼))
4741, 46elpwd 4586 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∈ 𝒫 ({0, 1} × 𝐼))
48 eleq1 2821 . . . . . . 7 (𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∈ 𝒫 ({0, 1} × 𝐼)))
4947, 48syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
50 prex 5417 . . . . . . . . 9 {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ∈ V
5150a1i 11 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ∈ V)
52 elfzoelz 13681 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) → 𝐾 ∈ ℤ)
5352, 7eleq2s 2851 . . . . . . . . . . . . . . 15 (𝐾𝐽𝐾 ∈ ℤ)
5453adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → 𝐾 ∈ ℤ)
5554adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → 𝐾 ∈ ℤ)
5628, 55zaddcld 12709 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑥 + 𝐾) ∈ ℤ)
57 zmodfzo 13916 . . . . . . . . . . . 12 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑥 + 𝐾) mod 𝑁) ∈ (0..^𝑁))
5856, 31, 57syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑥 + 𝐾) mod 𝑁) ∈ (0..^𝑁))
5958, 8eleqtrrdi 2844 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑥 + 𝐾) mod 𝑁) ∈ 𝐼)
6044, 59opelxpd 5704 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ ({0, 1} × 𝐼))
6145, 60prssd 4802 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ⊆ ({0, 1} × 𝐼))
6251, 61elpwd 4586 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ∈ 𝒫 ({0, 1} × 𝐼))
63 eleq1 2821 . . . . . . 7 (𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} → (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ↔ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ∈ 𝒫 ({0, 1} × 𝐼)))
6462, 63syl5ibrcom 247 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → (𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
6539, 49, 643jaod 1430 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑥𝐼) → ((𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
6665rexlimdva 3142 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
6766pm4.71rd 562 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))))
6818, 67bitr4id 290 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
6912, 68bitrd 279 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸 ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1539  wcel 2107  wrex 3059  {crab 3419  Vcvv 3463  𝒫 cpw 4580  {cpr 4608  cop 4612   × cxp 5663  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138   + caddc 11140   / cdiv 11902  cn 12248  2c2 12303  3c3 12304  cz 12596  cuz 12860  ..^cfzo 13676  cceil 13813   mod cmo 13891  Edgcedg 28993   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14353  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-edgf 28935  df-iedg 28945  df-edg 28994  df-gpg 47973
This theorem is referenced by:  gpgedgvtx0  47992  gpgedgvtx1  47993  gpgvtxedg0  47994  gpgvtxedg1  47995  gpg5nbgrvtx03starlem1  47997  gpg5nbgrvtx03starlem2  47998  gpg5nbgrvtx03starlem3  47999  gpg5nbgrvtx13starlem1  48000  gpg5nbgrvtx13starlem2  48001  gpg5nbgrvtx13starlem3  48002  gpg3kgrtriexlem6  48017
  Copyright terms: Public domain W3C validator