Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgedgel Structured version   Visualization version   GIF version

Theorem gpgedgel 48081
Description: An edge in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) (Proof shortened by AV, 8-Nov-2025.)
Hypotheses
Ref Expression
gpgvtxel.i 𝐼 = (0..^𝑁)
gpgvtxel.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgvtxel.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgedgel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpgedgel ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸 ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝑁   𝑥,𝑌
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem gpgedgel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 gpgedgel.e . . . . 5 𝐸 = (Edg‘𝐺)
2 gpgvtxel.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
32fveq2i 6820 . . . . 5 (Edg‘𝐺) = (Edg‘(𝑁 gPetersenGr 𝐾))
41, 3eqtri 2754 . . . 4 𝐸 = (Edg‘(𝑁 gPetersenGr 𝐾))
54eleq2i 2823 . . 3 (𝑌𝐸𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)))
6 eluz3nn 12782 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
7 gpgvtxel.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
8 gpgvtxel.i . . . . . 6 𝐼 = (0..^𝑁)
97, 8gpgedg 48076 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
106, 9sylan 580 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})})
1110eleq2d 2817 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌 ∈ (Edg‘(𝑁 gPetersenGr 𝐾)) ↔ 𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
125, 11bitrid 283 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})}))
13 eqeq1 2735 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
14 eqeq1 2735 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩}))
15 eqeq1 2735 . . . . . 6 (𝑒 = 𝑌 → (𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
1613, 14, 153orbi123d 1437 . . . . 5 (𝑒 = 𝑌 → ((𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
1716rexbidv 3156 . . . 4 (𝑒 = 𝑌 → (∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
1817elrab 3642 . . 3 (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
196anim1i 615 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑁 ∈ ℕ ∧ 𝐾𝐽))
208, 7gpgiedgdmellem 48077 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
2119, 20syl 17 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼)))
2221pm4.71rd 562 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝑌 ∈ 𝒫 ({0, 1} × 𝐼) ∧ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))))
2318, 22bitr4id 290 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌 ∈ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥𝐼 (𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})} ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
2412, 23bitrd 279 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑌𝐸 ↔ ∃𝑥𝐼 (𝑌 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝑌 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑌 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  𝒫 cpw 4545  {cpr 4573  cop 4577   × cxp 5609  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002   + caddc 11004   / cdiv 11769  cn 12120  2c2 12175  3c3 12176  cuz 12727  ..^cfzo 13549  cceil 13690   mod cmo 13768  Edgcedg 29020   gPetersenGr cgpg 48071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-hash 14233  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-edgf 28962  df-iedg 28972  df-edg 29021  df-gpg 48072
This theorem is referenced by:  gpgedgvtx0  48092  gpgedgvtx1  48093  gpgvtxedg0  48094  gpgvtxedg1  48095  gpgedgiov  48096  gpg5nbgrvtx03starlem1  48099  gpg5nbgrvtx03starlem2  48100  gpg5nbgrvtx03starlem3  48101  gpg5nbgrvtx13starlem1  48102  gpg5nbgrvtx13starlem2  48103  gpg5nbgrvtx13starlem3  48104  gpg3kgrtriexlem6  48119  gpg5edgnedg  48161
  Copyright terms: Public domain W3C validator