Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgvtxel Structured version   Visualization version   GIF version

Theorem gpgvtxel 47958
Description: A vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.)
Hypotheses
Ref Expression
gpgvtxel.i 𝐼 = (0..^𝑁)
gpgvtxel.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgvtxel.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
gpgvtxel ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦𝐼 𝑋 = ⟨𝑥, 𝑦⟩))
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem gpgvtxel
StepHypRef Expression
1 gpgvtxel.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 gpgvtxel.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
32fveq2i 6876 . . . . 5 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
41, 3eqtri 2757 . . . 4 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾))
54eleq2i 2825 . . 3 (𝑋𝑉𝑋 ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)))
6 eluzge3nn 12899 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
7 gpgvtxel.j . . . . . 6 𝐽 = (1..^(⌈‘(𝑁 / 2)))
8 gpgvtxel.i . . . . . 6 𝐼 = (0..^𝑁)
97, 8gpgvtx 47955 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼))
109eleq2d 2819 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (𝑋 ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ 𝑋 ∈ ({0, 1} × 𝐼)))
116, 10sylan 580 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋 ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ 𝑋 ∈ ({0, 1} × 𝐼)))
125, 11bitrid 283 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉𝑋 ∈ ({0, 1} × 𝐼)))
13 elxp2 5676 . 2 (𝑋 ∈ ({0, 1} × 𝐼) ↔ ∃𝑥 ∈ {0, 1}∃𝑦𝐼 𝑋 = ⟨𝑥, 𝑦⟩)
1412, 13bitrdi 287 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦𝐼 𝑋 = ⟨𝑥, 𝑦⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  {cpr 4601  cop 4605   × cxp 5650  cfv 6528  (class class class)co 7400  0cc0 11122  1c1 11123   / cdiv 11887  cn 12233  2c2 12288  3c3 12289  cuz 12845  ..^cfzo 13661  cceil 13798  Vtxcvtx 28909   gPetersenGr cgpg 47952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-oadd 8479  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-dju 9908  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-hash 14339  df-struct 17153  df-slot 17188  df-ndx 17200  df-base 17216  df-edgf 28902  df-vtx 28911  df-gpg 47953
This theorem is referenced by:  gpgvtxel2  47959  gpgvtx0  47961  gpgvtx1  47962  gpgedgvtx0  47972  gpgedgvtx1  47973  gpgcubic  47988  gpg5nbgr3star  47990
  Copyright terms: Public domain W3C validator