Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgprismgr4cycllem2 Structured version   Visualization version   GIF version

Theorem gpgprismgr4cycllem2 48090
Description: Lemma 2 for gpgprismgr4cycl0 48100: the cycle 𝑃, 𝐹 is proper, i.e., it has no overlapping edges. (Contributed by AV, 2-Nov-2025.)
Hypothesis
Ref Expression
gpgprismgr4cycllem1.f 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
Assertion
Ref Expression
gpgprismgr4cycllem2 Fun 𝐹

Proof of Theorem gpgprismgr4cycllem2
StepHypRef Expression
1 prex 5395 . . . . 5 {⟨0, 0⟩, ⟨0, 1⟩} ∈ V
2 prex 5395 . . . . 5 {⟨0, 1⟩, ⟨1, 1⟩} ∈ V
31, 2pm3.2i 470 . . . 4 ({⟨0, 0⟩, ⟨0, 1⟩} ∈ V ∧ {⟨0, 1⟩, ⟨1, 1⟩} ∈ V)
4 prex 5395 . . . . 5 {⟨1, 1⟩, ⟨1, 0⟩} ∈ V
5 prex 5395 . . . . 5 {⟨1, 0⟩, ⟨0, 0⟩} ∈ V
64, 5pm3.2i 470 . . . 4 ({⟨1, 1⟩, ⟨1, 0⟩} ∈ V ∧ {⟨1, 0⟩, ⟨0, 0⟩} ∈ V)
73, 6pm3.2i 470 . . 3 (({⟨0, 0⟩, ⟨0, 1⟩} ∈ V ∧ {⟨0, 1⟩, ⟨1, 1⟩} ∈ V) ∧ ({⟨1, 1⟩, ⟨1, 0⟩} ∈ V ∧ {⟨1, 0⟩, ⟨0, 0⟩} ∈ V))
8 opex 5427 . . . . . . . 8 ⟨0, 0⟩ ∈ V
9 opex 5427 . . . . . . . 8 ⟨0, 1⟩ ∈ V
108, 9pm3.2i 470 . . . . . . 7 (⟨0, 0⟩ ∈ V ∧ ⟨0, 1⟩ ∈ V)
11 opex 5427 . . . . . . . 8 ⟨1, 1⟩ ∈ V
129, 11pm3.2i 470 . . . . . . 7 (⟨0, 1⟩ ∈ V ∧ ⟨1, 1⟩ ∈ V)
1310, 12pm3.2i 470 . . . . . 6 ((⟨0, 0⟩ ∈ V ∧ ⟨0, 1⟩ ∈ V) ∧ (⟨0, 1⟩ ∈ V ∧ ⟨1, 1⟩ ∈ V))
14 0ne1 12264 . . . . . . . . . 10 0 ≠ 1
1514olci 866 . . . . . . . . 9 (0 ≠ 0 ∨ 0 ≠ 1)
16 c0ex 11175 . . . . . . . . . 10 0 ∈ V
1716, 16opthne 5445 . . . . . . . . 9 (⟨0, 0⟩ ≠ ⟨0, 1⟩ ↔ (0 ≠ 0 ∨ 0 ≠ 1))
1815, 17mpbir 231 . . . . . . . 8 ⟨0, 0⟩ ≠ ⟨0, 1⟩
1914orci 865 . . . . . . . . 9 (0 ≠ 1 ∨ 0 ≠ 1)
2016, 16opthne 5445 . . . . . . . . 9 (⟨0, 0⟩ ≠ ⟨1, 1⟩ ↔ (0 ≠ 1 ∨ 0 ≠ 1))
2119, 20mpbir 231 . . . . . . . 8 ⟨0, 0⟩ ≠ ⟨1, 1⟩
2218, 21pm3.2i 470 . . . . . . 7 (⟨0, 0⟩ ≠ ⟨0, 1⟩ ∧ ⟨0, 0⟩ ≠ ⟨1, 1⟩)
2322orci 865 . . . . . 6 ((⟨0, 0⟩ ≠ ⟨0, 1⟩ ∧ ⟨0, 0⟩ ≠ ⟨1, 1⟩) ∨ (⟨0, 1⟩ ≠ ⟨0, 1⟩ ∧ ⟨0, 1⟩ ≠ ⟨1, 1⟩))
24 prneimg 4821 . . . . . 6 (((⟨0, 0⟩ ∈ V ∧ ⟨0, 1⟩ ∈ V) ∧ (⟨0, 1⟩ ∈ V ∧ ⟨1, 1⟩ ∈ V)) → (((⟨0, 0⟩ ≠ ⟨0, 1⟩ ∧ ⟨0, 0⟩ ≠ ⟨1, 1⟩) ∨ (⟨0, 1⟩ ≠ ⟨0, 1⟩ ∧ ⟨0, 1⟩ ≠ ⟨1, 1⟩)) → {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨0, 1⟩, ⟨1, 1⟩}))
2513, 23, 24mp2 9 . . . . 5 {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨0, 1⟩, ⟨1, 1⟩}
26 opex 5427 . . . . . . . 8 ⟨1, 0⟩ ∈ V
2711, 26pm3.2i 470 . . . . . . 7 (⟨1, 1⟩ ∈ V ∧ ⟨1, 0⟩ ∈ V)
2810, 27pm3.2i 470 . . . . . 6 ((⟨0, 0⟩ ∈ V ∧ ⟨0, 1⟩ ∈ V) ∧ (⟨1, 1⟩ ∈ V ∧ ⟨1, 0⟩ ∈ V))
2914orci 865 . . . . . . . . 9 (0 ≠ 1 ∨ 0 ≠ 0)
3016, 16opthne 5445 . . . . . . . . 9 (⟨0, 0⟩ ≠ ⟨1, 0⟩ ↔ (0 ≠ 1 ∨ 0 ≠ 0))
3129, 30mpbir 231 . . . . . . . 8 ⟨0, 0⟩ ≠ ⟨1, 0⟩
3221, 31pm3.2i 470 . . . . . . 7 (⟨0, 0⟩ ≠ ⟨1, 1⟩ ∧ ⟨0, 0⟩ ≠ ⟨1, 0⟩)
3332orci 865 . . . . . 6 ((⟨0, 0⟩ ≠ ⟨1, 1⟩ ∧ ⟨0, 0⟩ ≠ ⟨1, 0⟩) ∨ (⟨0, 1⟩ ≠ ⟨1, 1⟩ ∧ ⟨0, 1⟩ ≠ ⟨1, 0⟩))
34 prneimg 4821 . . . . . 6 (((⟨0, 0⟩ ∈ V ∧ ⟨0, 1⟩ ∈ V) ∧ (⟨1, 1⟩ ∈ V ∧ ⟨1, 0⟩ ∈ V)) → (((⟨0, 0⟩ ≠ ⟨1, 1⟩ ∧ ⟨0, 0⟩ ≠ ⟨1, 0⟩) ∨ (⟨0, 1⟩ ≠ ⟨1, 1⟩ ∧ ⟨0, 1⟩ ≠ ⟨1, 0⟩)) → {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩}))
3528, 33, 34mp2 9 . . . . 5 {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩}
3626, 8pm3.2i 470 . . . . . . 7 (⟨1, 0⟩ ∈ V ∧ ⟨0, 0⟩ ∈ V)
3710, 36pm3.2i 470 . . . . . 6 ((⟨0, 0⟩ ∈ V ∧ ⟨0, 1⟩ ∈ V) ∧ (⟨1, 0⟩ ∈ V ∧ ⟨0, 0⟩ ∈ V))
38 ax-1ne0 11144 . . . . . . . . . 10 1 ≠ 0
3938olci 866 . . . . . . . . 9 (0 ≠ 1 ∨ 1 ≠ 0)
40 1ex 11177 . . . . . . . . . 10 1 ∈ V
4116, 40opthne 5445 . . . . . . . . 9 (⟨0, 1⟩ ≠ ⟨1, 0⟩ ↔ (0 ≠ 1 ∨ 1 ≠ 0))
4239, 41mpbir 231 . . . . . . . 8 ⟨0, 1⟩ ≠ ⟨1, 0⟩
4338olci 866 . . . . . . . . 9 (0 ≠ 0 ∨ 1 ≠ 0)
4416, 40opthne 5445 . . . . . . . . 9 (⟨0, 1⟩ ≠ ⟨0, 0⟩ ↔ (0 ≠ 0 ∨ 1 ≠ 0))
4543, 44mpbir 231 . . . . . . . 8 ⟨0, 1⟩ ≠ ⟨0, 0⟩
4642, 45pm3.2i 470 . . . . . . 7 (⟨0, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨0, 1⟩ ≠ ⟨0, 0⟩)
4746olci 866 . . . . . 6 ((⟨0, 0⟩ ≠ ⟨1, 0⟩ ∧ ⟨0, 0⟩ ≠ ⟨0, 0⟩) ∨ (⟨0, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨0, 1⟩ ≠ ⟨0, 0⟩))
48 prneimg 4821 . . . . . 6 (((⟨0, 0⟩ ∈ V ∧ ⟨0, 1⟩ ∈ V) ∧ (⟨1, 0⟩ ∈ V ∧ ⟨0, 0⟩ ∈ V)) → (((⟨0, 0⟩ ≠ ⟨1, 0⟩ ∧ ⟨0, 0⟩ ≠ ⟨0, 0⟩) ∨ (⟨0, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨0, 1⟩ ≠ ⟨0, 0⟩)) → {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}))
4937, 47, 48mp2 9 . . . . 5 {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}
5025, 35, 493pm3.2i 1340 . . . 4 ({⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨0, 1⟩, ⟨1, 1⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩})
5112, 27pm3.2i 470 . . . . . 6 ((⟨0, 1⟩ ∈ V ∧ ⟨1, 1⟩ ∈ V) ∧ (⟨1, 1⟩ ∈ V ∧ ⟨1, 0⟩ ∈ V))
5214orci 865 . . . . . . . . 9 (0 ≠ 1 ∨ 1 ≠ 1)
5316, 40opthne 5445 . . . . . . . . 9 (⟨0, 1⟩ ≠ ⟨1, 1⟩ ↔ (0 ≠ 1 ∨ 1 ≠ 1))
5452, 53mpbir 231 . . . . . . . 8 ⟨0, 1⟩ ≠ ⟨1, 1⟩
5554, 42pm3.2i 470 . . . . . . 7 (⟨0, 1⟩ ≠ ⟨1, 1⟩ ∧ ⟨0, 1⟩ ≠ ⟨1, 0⟩)
5655orci 865 . . . . . 6 ((⟨0, 1⟩ ≠ ⟨1, 1⟩ ∧ ⟨0, 1⟩ ≠ ⟨1, 0⟩) ∨ (⟨1, 1⟩ ≠ ⟨1, 1⟩ ∧ ⟨1, 1⟩ ≠ ⟨1, 0⟩))
57 prneimg 4821 . . . . . 6 (((⟨0, 1⟩ ∈ V ∧ ⟨1, 1⟩ ∈ V) ∧ (⟨1, 1⟩ ∈ V ∧ ⟨1, 0⟩ ∈ V)) → (((⟨0, 1⟩ ≠ ⟨1, 1⟩ ∧ ⟨0, 1⟩ ≠ ⟨1, 0⟩) ∨ (⟨1, 1⟩ ≠ ⟨1, 1⟩ ∧ ⟨1, 1⟩ ≠ ⟨1, 0⟩)) → {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩}))
5851, 56, 57mp2 9 . . . . 5 {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩}
5912, 36pm3.2i 470 . . . . . 6 ((⟨0, 1⟩ ∈ V ∧ ⟨1, 1⟩ ∈ V) ∧ (⟨1, 0⟩ ∈ V ∧ ⟨0, 0⟩ ∈ V))
6038olci 866 . . . . . . . . 9 (1 ≠ 1 ∨ 1 ≠ 0)
6140, 40opthne 5445 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨1, 0⟩ ↔ (1 ≠ 1 ∨ 1 ≠ 0))
6260, 61mpbir 231 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨1, 0⟩
6338olci 866 . . . . . . . . 9 (1 ≠ 0 ∨ 1 ≠ 0)
6440, 40opthne 5445 . . . . . . . . 9 (⟨1, 1⟩ ≠ ⟨0, 0⟩ ↔ (1 ≠ 0 ∨ 1 ≠ 0))
6563, 64mpbir 231 . . . . . . . 8 ⟨1, 1⟩ ≠ ⟨0, 0⟩
6662, 65pm3.2i 470 . . . . . . 7 (⟨1, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨1, 1⟩ ≠ ⟨0, 0⟩)
6766olci 866 . . . . . 6 ((⟨0, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨0, 1⟩ ≠ ⟨0, 0⟩) ∨ (⟨1, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨1, 1⟩ ≠ ⟨0, 0⟩))
68 prneimg 4821 . . . . . 6 (((⟨0, 1⟩ ∈ V ∧ ⟨1, 1⟩ ∈ V) ∧ (⟨1, 0⟩ ∈ V ∧ ⟨0, 0⟩ ∈ V)) → (((⟨0, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨0, 1⟩ ≠ ⟨0, 0⟩) ∨ (⟨1, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨1, 1⟩ ≠ ⟨0, 0⟩)) → {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}))
6959, 67, 68mp2 9 . . . . 5 {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}
7027, 36pm3.2i 470 . . . . . 6 ((⟨1, 1⟩ ∈ V ∧ ⟨1, 0⟩ ∈ V) ∧ (⟨1, 0⟩ ∈ V ∧ ⟨0, 0⟩ ∈ V))
7166orci 865 . . . . . 6 ((⟨1, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨1, 1⟩ ≠ ⟨0, 0⟩) ∨ (⟨1, 0⟩ ≠ ⟨1, 0⟩ ∧ ⟨1, 0⟩ ≠ ⟨0, 0⟩))
72 prneimg 4821 . . . . . 6 (((⟨1, 1⟩ ∈ V ∧ ⟨1, 0⟩ ∈ V) ∧ (⟨1, 0⟩ ∈ V ∧ ⟨0, 0⟩ ∈ V)) → (((⟨1, 1⟩ ≠ ⟨1, 0⟩ ∧ ⟨1, 1⟩ ≠ ⟨0, 0⟩) ∨ (⟨1, 0⟩ ≠ ⟨1, 0⟩ ∧ ⟨1, 0⟩ ≠ ⟨0, 0⟩)) → {⟨1, 1⟩, ⟨1, 0⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}))
7370, 71, 72mp2 9 . . . . 5 {⟨1, 1⟩, ⟨1, 0⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}
7458, 69, 733pm3.2i 1340 . . . 4 ({⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩} ∧ {⟨1, 1⟩, ⟨1, 0⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩})
7550, 74pm3.2i 470 . . 3 (({⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨0, 1⟩, ⟨1, 1⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}) ∧ ({⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩} ∧ {⟨1, 1⟩, ⟨1, 0⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}))
767, 75pm3.2i 470 . 2 ((({⟨0, 0⟩, ⟨0, 1⟩} ∈ V ∧ {⟨0, 1⟩, ⟨1, 1⟩} ∈ V) ∧ ({⟨1, 1⟩, ⟨1, 0⟩} ∈ V ∧ {⟨1, 0⟩, ⟨0, 0⟩} ∈ V)) ∧ (({⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨0, 1⟩, ⟨1, 1⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}) ∧ ({⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩} ∧ {⟨1, 1⟩, ⟨1, 0⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩})))
77 s4f1o 14891 . . 3 ((({⟨0, 0⟩, ⟨0, 1⟩} ∈ V ∧ {⟨0, 1⟩, ⟨1, 1⟩} ∈ V) ∧ ({⟨1, 1⟩, ⟨1, 0⟩} ∈ V ∧ {⟨1, 0⟩, ⟨0, 0⟩} ∈ V)) → ((({⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨0, 1⟩, ⟨1, 1⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}) ∧ ({⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩} ∧ {⟨1, 1⟩, ⟨1, 0⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩})) → (𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩ → 𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}))))
7877imp 406 . 2 (((({⟨0, 0⟩, ⟨0, 1⟩} ∈ V ∧ {⟨0, 1⟩, ⟨1, 1⟩} ∈ V) ∧ ({⟨1, 1⟩, ⟨1, 0⟩} ∈ V ∧ {⟨1, 0⟩, ⟨0, 0⟩} ∈ V)) ∧ (({⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨0, 1⟩, ⟨1, 1⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 0⟩, ⟨0, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}) ∧ ({⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 1⟩, ⟨1, 0⟩} ∧ {⟨0, 1⟩, ⟨1, 1⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩} ∧ {⟨1, 1⟩, ⟨1, 0⟩} ≠ {⟨1, 0⟩, ⟨0, 0⟩}))) → (𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩ → 𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}})))
79 gpgprismgr4cycllem1.f . . . 4 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
80 pm2.27 42 . . . 4 (𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩ → ((𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩ → 𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}})) → 𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}})))
8179, 80ax-mp 5 . . 3 ((𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩ → 𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}})) → 𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}))
82 df-f1o 6521 . . . 4 (𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}) ↔ (𝐹:dom 𝐹1-1→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}) ∧ 𝐹:dom 𝐹onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}})))
83 df-f1 6519 . . . . . 6 (𝐹:dom 𝐹1-1→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}) ↔ (𝐹:dom 𝐹⟶({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}) ∧ Fun 𝐹))
8483simprbi 496 . . . . 5 (𝐹:dom 𝐹1-1→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}) → Fun 𝐹)
8584adantr 480 . . . 4 ((𝐹:dom 𝐹1-1→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}) ∧ 𝐹:dom 𝐹onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}})) → Fun 𝐹)
8682, 85sylbi 217 . . 3 (𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}}) → Fun 𝐹)
8781, 86syl 17 . 2 ((𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩ → 𝐹:dom 𝐹1-1-onto→({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 1⟩, ⟨1, 1⟩}} ∪ {{⟨1, 1⟩, ⟨1, 0⟩}, {⟨1, 0⟩, ⟨0, 0⟩}})) → Fun 𝐹)
8876, 78, 87mp2b 10 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cun 3915  {cpr 4594  cop 4598  ccnv 5640  dom cdm 5641  Fun wfun 6508  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  0cc0 11075  1c1 11076  ⟨“cs4 14816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-s4 14823
This theorem is referenced by:  gpgprismgr4cycllem11  48099
  Copyright terms: Public domain W3C validator