| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgprismgr4cycl0 | Structured version Visualization version GIF version | ||
| Description: The generalized Petersen graphs G(N,1), which are the N-prisms, have a cycle of length 4 starting at the vertex 〈0, 0〉. (Contributed by AV, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpgprismgr4cycl.p | ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 |
| gpgprismgr4cycl.f | ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 |
| gpgprismgr4cycl.g | ⊢ 𝐺 = (𝑁 gPetersenGr 1) |
| Ref | Expression |
|---|---|
| gpgprismgr4cycl0 | ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgprismgr4cycl.p | . . 3 ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 | |
| 2 | gpgprismgr4cycl.f | . . 3 ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 | |
| 3 | gpgprismgr4cycl.g | . . 3 ⊢ 𝐺 = (𝑁 gPetersenGr 1) | |
| 4 | 1, 2, 3 | gpgprismgr4cycllem11 48204 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) |
| 5 | 2 | gpgprismgr4cycllem1 48194 | . 2 ⊢ (♯‘𝐹) = 4 |
| 6 | 4, 5 | jctir 520 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cpr 4575 〈cop 4579 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 3c3 12181 4c4 12182 ℤ≥cuz 12732 ♯chash 14237 〈“cs4 14750 〈“cs5 14751 Cyclesccycls 29763 gPetersenGr cgpg 48139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-fl 13696 df-ceil 13697 df-mod 13774 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-s4 14757 df-s5 14758 df-dvds 16164 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28967 df-vtx 28976 df-iedg 28977 df-edg 29026 df-uhgr 29036 df-upgr 29060 df-uspgr 29128 df-usgr 29129 df-wlks 29578 df-trls 29669 df-pths 29692 df-cycls 29765 df-gpg 48140 |
| This theorem is referenced by: gpgprismgr4cyclex 48206 |
| Copyright terms: Public domain | W3C validator |