| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlimpredg | Structured version Visualization version GIF version | ||
| Description: For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there is a bijection 𝑓 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹‘𝐴), so that the mapped vertices of an edge {𝐴, 𝐵} containing the vertex 𝐴 is an edge in 𝐻. (Contributed by AV, 27-Dec-2025.) |
| Ref | Expression |
|---|---|
| clnbgrvtxedg.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) |
| clnbgrvtxedg.i | ⊢ 𝐼 = (Edg‘𝐺) |
| clnbgrvtxedg.k | ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| grlimedgclnbgr.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) |
| grlimedgclnbgr.j | ⊢ 𝐽 = (Edg‘𝐻) |
| grlimedgclnbgr.l | ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
| Ref | Expression |
|---|---|
| grlimpredg | ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | . . 3 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝐴) | |
| 2 | clnbgrvtxedg.i | . . 3 ⊢ 𝐼 = (Edg‘𝐺) | |
| 3 | clnbgrvtxedg.k | . . 3 ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} | |
| 4 | grlimedgclnbgr.m | . . 3 ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝐴)) | |
| 5 | grlimedgclnbgr.j | . . 3 ⊢ 𝐽 = (Edg‘𝐻) | |
| 6 | grlimedgclnbgr.l | . . 3 ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} | |
| 7 | 1, 2, 3, 4, 5, 6 | grlimprclnbgredg 48121 | . 2 ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿)) |
| 8 | sseq1 3956 | . . . . . 6 ⊢ (𝑥 = {(𝑓‘𝐴), (𝑓‘𝐵)} → (𝑥 ⊆ 𝑀 ↔ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) | |
| 9 | 8, 6 | elrab2 3646 | . . . . 5 ⊢ ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 ↔ ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀)) |
| 10 | simpl 482 | . . . . . 6 ⊢ (({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀) → {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽) | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → (({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ⊆ 𝑀) → {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽)) |
| 12 | 9, 11 | biimtrid 242 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁–1-1-onto→𝑀) → ({(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿 → {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽)) |
| 13 | 12 | imdistanda 571 | . . 3 ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ((𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿) → (𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽))) |
| 14 | 13 | eximdv 1918 | . 2 ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐿) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽))) |
| 15 | 7, 14 | mpd 15 | 1 ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ {(𝑓‘𝐴), (𝑓‘𝐵)} ∈ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 {cpr 4577 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 Edgcedg 29027 USPGraphcuspgr 29128 ClNeighbVtx cclnbgr 47942 GraphLocIso cgrlim 48100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-hash 14240 df-vtx 28978 df-iedg 28979 df-edg 29028 df-uhgr 29038 df-upgr 29062 df-uspgr 29130 df-nbgr 29313 df-clnbgr 47943 df-isubgr 47985 df-grim 48002 df-gric 48005 df-grlim 48102 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |