Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimpredg Structured version   Visualization version   GIF version

Theorem grlimpredg 48122
Description: For two locally isomorphic graphs 𝐺 and 𝐻 and a vertex 𝐴 of 𝐺 there is a bijection 𝑓 mapping the closed neighborhood 𝑁 of 𝐴 onto the closed neighborhood 𝑀 of (𝐹𝐴), so that the mapped vertices of an edge {𝐴, 𝐵} containing the vertex 𝐴 is an edge in 𝐻. (Contributed by AV, 27-Dec-2025.)
Hypotheses
Ref Expression
clnbgrvtxedg.n 𝑁 = (𝐺 ClNeighbVtx 𝐴)
clnbgrvtxedg.i 𝐼 = (Edg‘𝐺)
clnbgrvtxedg.k 𝐾 = {𝑥𝐼𝑥𝑁}
grlimedgclnbgr.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴))
grlimedgclnbgr.j 𝐽 = (Edg‘𝐻)
grlimedgclnbgr.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
grlimpredg (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝐴,𝑓   𝑓,𝐹,𝑥   𝑓,𝐺,𝑥   𝑓,𝐻,𝑥   𝑓,𝐼   𝑥,𝐽   𝐵,𝑓,𝑥   𝑓,𝑉   𝑓,𝑊   𝑥,𝑀   𝑥,𝑓
Allowed substitution hints:   𝐽(𝑓)   𝐾(𝑥,𝑓)   𝐿(𝑥,𝑓)   𝑀(𝑓)   𝑁(𝑓)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem grlimpredg
StepHypRef Expression
1 clnbgrvtxedg.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝐴)
2 clnbgrvtxedg.i . . 3 𝐼 = (Edg‘𝐺)
3 clnbgrvtxedg.k . . 3 𝐾 = {𝑥𝐼𝑥𝑁}
4 grlimedgclnbgr.m . . 3 𝑀 = (𝐻 ClNeighbVtx (𝐹𝐴))
5 grlimedgclnbgr.j . . 3 𝐽 = (Edg‘𝐻)
6 grlimedgclnbgr.l . . 3 𝐿 = {𝑥𝐽𝑥𝑀}
71, 2, 3, 4, 5, 6grlimprclnbgredg 48121 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿))
8 sseq1 3956 . . . . . 6 (𝑥 = {(𝑓𝐴), (𝑓𝐵)} → (𝑥𝑀 ↔ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀))
98, 6elrab2 3646 . . . . 5 ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿 ↔ ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀))
10 simpl 482 . . . . . 6 (({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀) → {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽)
1110a1i 11 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → (({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽 ∧ {(𝑓𝐴), (𝑓𝐵)} ⊆ 𝑀) → {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽))
129, 11biimtrid 242 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) ∧ 𝑓:𝑁1-1-onto𝑀) → ({(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿 → {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽))
1312imdistanda 571 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ((𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿) → (𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽)))
1413eximdv 1918 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → (∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐿) → ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽)))
157, 14mpd 15 1 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻) ∧ (𝐴𝑉𝐵𝑊 ∧ {𝐴, 𝐵} ∈ 𝐼)) → ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ {(𝑓𝐴), (𝑓𝐵)} ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  {crab 3396  wss 3898  {cpr 4577  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Edgcedg 29027  USPGraphcuspgr 29128   ClNeighbVtx cclnbgr 47942   GraphLocIso cgrlim 48100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-hash 14240  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-uspgr 29130  df-nbgr 29313  df-clnbgr 47943  df-isubgr 47985  df-grim 48002  df-gric 48005  df-grlim 48102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator