MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptnn0fzfv Structured version   Visualization version   GIF version

Theorem gsummptnn0fzfv 19503
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
Hypotheses
Ref Expression
gsummptnn0fzfv.b 𝐵 = (Base‘𝐺)
gsummptnn0fzfv.0 0 = (0g𝐺)
gsummptnn0fzfv.g (𝜑𝐺 ∈ CMnd)
gsummptnn0fzfv.f (𝜑𝐹 ∈ (𝐵m0))
gsummptnn0fzfv.s (𝜑𝑆 ∈ ℕ0)
gsummptnn0fzfv.u (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
Assertion
Ref Expression
gsummptnn0fzfv (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹𝑘))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹,𝑥   𝑆,𝑘,𝑥   0 ,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑘)

Proof of Theorem gsummptnn0fzfv
StepHypRef Expression
1 gsummptnn0fzfv.b . 2 𝐵 = (Base‘𝐺)
2 gsummptnn0fzfv.0 . 2 0 = (0g𝐺)
3 gsummptnn0fzfv.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsummptnn0fzfv.f . . . 4 (𝜑𝐹 ∈ (𝐵m0))
5 elmapi 8595 . . . 4 (𝐹 ∈ (𝐵m0) → 𝐹:ℕ0𝐵)
6 ffvelrn 6941 . . . . 5 ((𝐹:ℕ0𝐵𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐵)
76ex 412 . . . 4 (𝐹:ℕ0𝐵 → (𝑘 ∈ ℕ0 → (𝐹𝑘) ∈ 𝐵))
84, 5, 73syl 18 . . 3 (𝜑 → (𝑘 ∈ ℕ0 → (𝐹𝑘) ∈ 𝐵))
98ralrimiv 3106 . 2 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹𝑘) ∈ 𝐵)
10 gsummptnn0fzfv.s . 2 (𝜑𝑆 ∈ ℕ0)
11 gsummptnn0fzfv.u . . 3 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
12 breq2 5074 . . . . 5 (𝑥 = 𝑘 → (𝑆 < 𝑥𝑆 < 𝑘))
13 fveqeq2 6765 . . . . 5 (𝑥 = 𝑘 → ((𝐹𝑥) = 0 ↔ (𝐹𝑘) = 0 ))
1412, 13imbi12d 344 . . . 4 (𝑥 = 𝑘 → ((𝑆 < 𝑥 → (𝐹𝑥) = 0 ) ↔ (𝑆 < 𝑘 → (𝐹𝑘) = 0 )))
1514cbvralvw 3372 . . 3 (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) ↔ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹𝑘) = 0 ))
1611, 15sylib 217 . 2 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹𝑘) = 0 ))
171, 2, 3, 9, 10, 16gsummptnn0fz 19502 1 (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802   < clt 10940  0cn0 12163  ...cfz 13168  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-cntz 18838  df-cmn 19303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator