MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptnn0fzfv Structured version   Visualization version   GIF version

Theorem gsummptnn0fzfv 19973
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
Hypotheses
Ref Expression
gsummptnn0fzfv.b 𝐵 = (Base‘𝐺)
gsummptnn0fzfv.0 0 = (0g𝐺)
gsummptnn0fzfv.g (𝜑𝐺 ∈ CMnd)
gsummptnn0fzfv.f (𝜑𝐹 ∈ (𝐵m0))
gsummptnn0fzfv.s (𝜑𝑆 ∈ ℕ0)
gsummptnn0fzfv.u (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
Assertion
Ref Expression
gsummptnn0fzfv (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹𝑘))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹,𝑥   𝑆,𝑘,𝑥   0 ,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑘)

Proof of Theorem gsummptnn0fzfv
StepHypRef Expression
1 gsummptnn0fzfv.b . 2 𝐵 = (Base‘𝐺)
2 gsummptnn0fzfv.0 . 2 0 = (0g𝐺)
3 gsummptnn0fzfv.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsummptnn0fzfv.f . . . 4 (𝜑𝐹 ∈ (𝐵m0))
5 elmapi 8868 . . . 4 (𝐹 ∈ (𝐵m0) → 𝐹:ℕ0𝐵)
6 ffvelcdm 7076 . . . . 5 ((𝐹:ℕ0𝐵𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐵)
76ex 412 . . . 4 (𝐹:ℕ0𝐵 → (𝑘 ∈ ℕ0 → (𝐹𝑘) ∈ 𝐵))
84, 5, 73syl 18 . . 3 (𝜑 → (𝑘 ∈ ℕ0 → (𝐹𝑘) ∈ 𝐵))
98ralrimiv 3132 . 2 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹𝑘) ∈ 𝐵)
10 gsummptnn0fzfv.s . 2 (𝜑𝑆 ∈ ℕ0)
11 gsummptnn0fzfv.u . . 3 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
12 breq2 5128 . . . . 5 (𝑥 = 𝑘 → (𝑆 < 𝑥𝑆 < 𝑘))
13 fveqeq2 6890 . . . . 5 (𝑥 = 𝑘 → ((𝐹𝑥) = 0 ↔ (𝐹𝑘) = 0 ))
1412, 13imbi12d 344 . . . 4 (𝑥 = 𝑘 → ((𝑆 < 𝑥 → (𝐹𝑥) = 0 ) ↔ (𝑆 < 𝑘 → (𝐹𝑘) = 0 )))
1514cbvralvw 3224 . . 3 (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) ↔ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹𝑘) = 0 ))
1611, 15sylib 218 . 2 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹𝑘) = 0 ))
171, 2, 3, 9, 10, 16gsummptnn0fz 19972 1 (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  0cc0 11134   < clt 11274  0cn0 12506  ...cfz 13529  Basecbs 17233  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-cntz 19305  df-cmn 19768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator