![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptnn0fzfv | Structured version Visualization version GIF version |
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
Ref | Expression |
---|---|
gsummptnn0fzfv.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptnn0fzfv.0 | ⊢ 0 = (0g‘𝐺) |
gsummptnn0fzfv.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptnn0fzfv.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) |
gsummptnn0fzfv.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
gsummptnn0fzfv.u | ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) |
Ref | Expression |
---|---|
gsummptnn0fzfv | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹‘𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptnn0fzfv.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptnn0fzfv.0 | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsummptnn0fzfv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsummptnn0fzfv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m ℕ0)) | |
5 | elmapi 8845 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑m ℕ0) → 𝐹:ℕ0⟶𝐵) | |
6 | ffvelcdm 7082 | . . . . 5 ⊢ ((𝐹:ℕ0⟶𝐵 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝐵) | |
7 | 6 | ex 411 | . . . 4 ⊢ (𝐹:ℕ0⟶𝐵 → (𝑘 ∈ ℕ0 → (𝐹‘𝑘) ∈ 𝐵)) |
8 | 4, 5, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ℕ0 → (𝐹‘𝑘) ∈ 𝐵)) |
9 | 8 | ralrimiv 3143 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹‘𝑘) ∈ 𝐵) |
10 | gsummptnn0fzfv.s | . 2 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
11 | gsummptnn0fzfv.u | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) | |
12 | breq2 5151 | . . . . 5 ⊢ (𝑥 = 𝑘 → (𝑆 < 𝑥 ↔ 𝑆 < 𝑘)) | |
13 | fveqeq2 6899 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑘) = 0 )) | |
14 | 12, 13 | imbi12d 343 | . . . 4 ⊢ (𝑥 = 𝑘 → ((𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) ↔ (𝑆 < 𝑘 → (𝐹‘𝑘) = 0 ))) |
15 | 14 | cbvralvw 3232 | . . 3 ⊢ (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) ↔ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹‘𝑘) = 0 )) |
16 | 11, 15 | sylib 217 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹‘𝑘) = 0 )) |
17 | 1, 2, 3, 9, 10, 16 | gsummptnn0fz 19895 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹‘𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∀wral 3059 class class class wbr 5147 ↦ cmpt 5230 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 ↑m cmap 8822 0cc0 11112 < clt 11252 ℕ0cn0 12476 ...cfz 13488 Basecbs 17148 0gc0g 17389 Σg cgsu 17390 CMndccmn 19689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-seq 13971 df-hash 14295 df-0g 17391 df-gsum 17392 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-cntz 19222 df-cmn 19691 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |