MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptnn0fzfv Structured version   Visualization version   GIF version

Theorem gsummptnn0fzfv 19629
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
Hypotheses
Ref Expression
gsummptnn0fzfv.b 𝐵 = (Base‘𝐺)
gsummptnn0fzfv.0 0 = (0g𝐺)
gsummptnn0fzfv.g (𝜑𝐺 ∈ CMnd)
gsummptnn0fzfv.f (𝜑𝐹 ∈ (𝐵m0))
gsummptnn0fzfv.s (𝜑𝑆 ∈ ℕ0)
gsummptnn0fzfv.u (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
Assertion
Ref Expression
gsummptnn0fzfv (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹𝑘))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹,𝑥   𝑆,𝑘,𝑥   0 ,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥,𝑘)

Proof of Theorem gsummptnn0fzfv
StepHypRef Expression
1 gsummptnn0fzfv.b . 2 𝐵 = (Base‘𝐺)
2 gsummptnn0fzfv.0 . 2 0 = (0g𝐺)
3 gsummptnn0fzfv.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsummptnn0fzfv.f . . . 4 (𝜑𝐹 ∈ (𝐵m0))
5 elmapi 8664 . . . 4 (𝐹 ∈ (𝐵m0) → 𝐹:ℕ0𝐵)
6 ffvelcdm 6987 . . . . 5 ((𝐹:ℕ0𝐵𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝐵)
76ex 414 . . . 4 (𝐹:ℕ0𝐵 → (𝑘 ∈ ℕ0 → (𝐹𝑘) ∈ 𝐵))
84, 5, 73syl 18 . . 3 (𝜑 → (𝑘 ∈ ℕ0 → (𝐹𝑘) ∈ 𝐵))
98ralrimiv 3139 . 2 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹𝑘) ∈ 𝐵)
10 gsummptnn0fzfv.s . 2 (𝜑𝑆 ∈ ℕ0)
11 gsummptnn0fzfv.u . . 3 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ))
12 breq2 5085 . . . . 5 (𝑥 = 𝑘 → (𝑆 < 𝑥𝑆 < 𝑘))
13 fveqeq2 6809 . . . . 5 (𝑥 = 𝑘 → ((𝐹𝑥) = 0 ↔ (𝐹𝑘) = 0 ))
1412, 13imbi12d 346 . . . 4 (𝑥 = 𝑘 → ((𝑆 < 𝑥 → (𝐹𝑥) = 0 ) ↔ (𝑆 < 𝑘 → (𝐹𝑘) = 0 )))
1514cbvralvw 3222 . . 3 (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 0 ) ↔ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹𝑘) = 0 ))
1611, 15sylib 217 . 2 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹𝑘) = 0 ))
171, 2, 3, 9, 10, 16gsummptnn0fz 19628 1 (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wral 3062   class class class wbr 5081  cmpt 5164  wf 6450  cfv 6454  (class class class)co 7303  m cmap 8642  0cc0 10913   < clt 11051  0cn0 12275  ...cfz 13281  Basecbs 16953  0gc0g 17191   Σg cgsu 17192  CMndccmn 19427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616  ax-cnex 10969  ax-resscn 10970  ax-1cn 10971  ax-icn 10972  ax-addcl 10973  ax-addrcl 10974  ax-mulcl 10975  ax-mulrcl 10976  ax-mulcom 10977  ax-addass 10978  ax-mulass 10979  ax-distr 10980  ax-i2m1 10981  ax-1ne0 10982  ax-1rid 10983  ax-rnegex 10984  ax-rrecex 10985  ax-cnre 10986  ax-pre-lttri 10987  ax-pre-lttrn 10988  ax-pre-ltadd 10989  ax-pre-mulgt0 10990
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5496  df-eprel 5502  df-po 5510  df-so 5511  df-fr 5551  df-se 5552  df-we 5553  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-pred 6213  df-ord 6280  df-on 6281  df-lim 6282  df-suc 6283  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-isom 6463  df-riota 7260  df-ov 7306  df-oprab 7307  df-mpo 7308  df-om 7741  df-1st 7859  df-2nd 7860  df-supp 8005  df-frecs 8124  df-wrecs 8155  df-recs 8229  df-rdg 8268  df-1o 8324  df-er 8525  df-map 8644  df-en 8761  df-dom 8762  df-sdom 8763  df-fin 8764  df-fsupp 9169  df-oi 9309  df-card 9737  df-pnf 11053  df-mnf 11054  df-xr 11055  df-ltxr 11056  df-le 11057  df-sub 11249  df-neg 11250  df-nn 12016  df-n0 12276  df-z 12362  df-uz 12625  df-fz 13282  df-fzo 13425  df-seq 13764  df-hash 14087  df-0g 17193  df-gsum 17194  df-mgm 18367  df-sgrp 18416  df-mnd 18427  df-cntz 18964  df-cmn 19429
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator