MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmexpb Structured version   Visualization version   GIF version

Theorem prmexpb 16753
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
prmexpb (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) ↔ (𝑃 = 𝑄𝑀 = 𝑁)))

Proof of Theorem prmexpb
StepHypRef Expression
1 prmz 16709 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
21adantr 480 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℤ)
323ad2ant1 1132 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℤ)
4 simp2l 1198 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 ∈ ℕ)
5 iddvdsexp 16314 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ (𝑃𝑀))
63, 4, 5syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∥ (𝑃𝑀))
7 breq2 5152 . . . . . . 7 ((𝑃𝑀) = (𝑄𝑁) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 ∥ (𝑄𝑁)))
873ad2ant3 1134 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 ∥ (𝑄𝑁)))
9 simp1l 1196 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℙ)
10 simp1r 1197 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑄 ∈ ℙ)
11 simp2r 1199 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑁 ∈ ℕ)
12 prmdvdsexpb 16750 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
139, 10, 11, 12syl3anc 1370 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
148, 13bitrd 279 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 ∥ (𝑃𝑀) ↔ 𝑃 = 𝑄))
156, 14mpbid 232 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 = 𝑄)
163zred 12720 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑃 ∈ ℝ)
174nnzd 12638 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 ∈ ℤ)
1811nnzd 12638 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑁 ∈ ℤ)
19 prmgt1 16731 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
2019ad2antrr 726 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 < 𝑃)
21203adant3 1131 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 1 < 𝑃)
22 simp3 1137 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑀) = (𝑄𝑁))
2315oveq1d 7446 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑁) = (𝑄𝑁))
2422, 23eqtr4d 2778 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃𝑀) = (𝑃𝑁))
2516, 17, 18, 21, 24expcand 14289 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → 𝑀 = 𝑁)
2615, 25jca 511 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = (𝑄𝑁)) → (𝑃 = 𝑄𝑀 = 𝑁))
27263expia 1120 . 2 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) → (𝑃 = 𝑄𝑀 = 𝑁)))
28 oveq12 7440 . 2 ((𝑃 = 𝑄𝑀 = 𝑁) → (𝑃𝑀) = (𝑄𝑁))
2927, 28impbid1 225 1 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) ↔ (𝑃 = 𝑄𝑀 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  1c1 11154   < clt 11293  cn 12264  cz 12611  cexp 14099  cdvds 16287  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706
This theorem is referenced by:  fsumvma  27272
  Copyright terms: Public domain W3C validator