![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmexpb | Structured version Visualization version GIF version |
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
prmexpb | ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 16617 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℤ) |
3 | 2 | 3ad2ant1 1132 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℤ) |
4 | simp2l 1198 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 ∈ ℕ) | |
5 | iddvdsexp 16228 | . . . . . 6 ⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝑀)) | |
6 | 3, 4, 5 | syl2anc 583 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∥ (𝑃↑𝑀)) |
7 | breq2 5152 | . . . . . . 7 ⊢ ((𝑃↑𝑀) = (𝑄↑𝑁) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 ∥ (𝑄↑𝑁))) | |
8 | 7 | 3ad2ant3 1134 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 ∥ (𝑄↑𝑁))) |
9 | simp1l 1196 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℙ) | |
10 | simp1r 1197 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑄 ∈ ℙ) | |
11 | simp2r 1199 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑁 ∈ ℕ) | |
12 | prmdvdsexpb 16658 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | |
13 | 9, 10, 11, 12 | syl3anc 1370 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) |
14 | 8, 13 | bitrd 279 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 = 𝑄)) |
15 | 6, 14 | mpbid 231 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 = 𝑄) |
16 | 3 | zred 12671 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℝ) |
17 | 4 | nnzd 12590 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 ∈ ℤ) |
18 | 11 | nnzd 12590 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑁 ∈ ℤ) |
19 | prmgt1 16639 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
20 | 19 | ad2antrr 723 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 < 𝑃) |
21 | 20 | 3adant3 1131 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 1 < 𝑃) |
22 | simp3 1137 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑀) = (𝑄↑𝑁)) | |
23 | 15 | oveq1d 7427 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑁) = (𝑄↑𝑁)) |
24 | 22, 23 | eqtr4d 2774 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑀) = (𝑃↑𝑁)) |
25 | 16, 17, 18, 21, 24 | expcand 14221 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 = 𝑁) |
26 | 15, 25 | jca 511 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 = 𝑄 ∧ 𝑀 = 𝑁)) |
27 | 26 | 3expia 1120 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) → (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
28 | oveq12 7421 | . 2 ⊢ ((𝑃 = 𝑄 ∧ 𝑀 = 𝑁) → (𝑃↑𝑀) = (𝑄↑𝑁)) | |
29 | 27, 28 | impbid1 224 | 1 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 1c1 11114 < clt 11253 ℕcn 12217 ℤcz 12563 ↑cexp 14032 ∥ cdvds 16202 ℙcprime 16613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-dvds 16203 df-gcd 16441 df-prm 16614 |
This theorem is referenced by: fsumvma 26953 |
Copyright terms: Public domain | W3C validator |