Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmexpb | Structured version Visualization version GIF version |
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
prmexpb | ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 16425 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | 1 | adantr 482 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℤ) |
3 | 2 | 3ad2ant1 1133 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℤ) |
4 | simp2l 1199 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 ∈ ℕ) | |
5 | iddvdsexp 16034 | . . . . . 6 ⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝑀)) | |
6 | 3, 4, 5 | syl2anc 585 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∥ (𝑃↑𝑀)) |
7 | breq2 5085 | . . . . . . 7 ⊢ ((𝑃↑𝑀) = (𝑄↑𝑁) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 ∥ (𝑄↑𝑁))) | |
8 | 7 | 3ad2ant3 1135 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 ∥ (𝑄↑𝑁))) |
9 | simp1l 1197 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℙ) | |
10 | simp1r 1198 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑄 ∈ ℙ) | |
11 | simp2r 1200 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑁 ∈ ℕ) | |
12 | prmdvdsexpb 16466 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | |
13 | 9, 10, 11, 12 | syl3anc 1371 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) |
14 | 8, 13 | bitrd 279 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 = 𝑄)) |
15 | 6, 14 | mpbid 231 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 = 𝑄) |
16 | 3 | zred 12472 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℝ) |
17 | 4 | nnzd 12471 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 ∈ ℤ) |
18 | 11 | nnzd 12471 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑁 ∈ ℤ) |
19 | prmgt1 16447 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
20 | 19 | ad2antrr 724 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 < 𝑃) |
21 | 20 | 3adant3 1132 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 1 < 𝑃) |
22 | simp3 1138 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑀) = (𝑄↑𝑁)) | |
23 | 15 | oveq1d 7322 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑁) = (𝑄↑𝑁)) |
24 | 22, 23 | eqtr4d 2779 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑀) = (𝑃↑𝑁)) |
25 | 16, 17, 18, 21, 24 | expcand 14016 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 = 𝑁) |
26 | 15, 25 | jca 513 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 = 𝑄 ∧ 𝑀 = 𝑁)) |
27 | 26 | 3expia 1121 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) → (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
28 | oveq12 7316 | . 2 ⊢ ((𝑃 = 𝑄 ∧ 𝑀 = 𝑁) → (𝑃↑𝑀) = (𝑄↑𝑁)) | |
29 | 27, 28 | impbid1 224 | 1 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 1c1 10918 < clt 11055 ℕcn 12019 ℤcz 12365 ↑cexp 13828 ∥ cdvds 16008 ℙcprime 16421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-dvds 16009 df-gcd 16247 df-prm 16422 |
This theorem is referenced by: fsumvma 26406 |
Copyright terms: Public domain | W3C validator |