Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem5 | Structured version Visualization version GIF version |
Description: Lemma for knoppcn 34255. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppcnlem5.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
knoppcnlem5.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppcnlem5.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppcnlem5.1 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
knoppcnlem5 | ⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem5.t | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | knoppcnlem5.f | . . . . . 6 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
3 | knoppcnlem5.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | 3 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑁 ∈ ℕ) |
5 | knoppcnlem5.1 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | 5 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝐶 ∈ ℝ) |
7 | simpr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
8 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑚 ∈ ℕ0) | |
9 | 1, 2, 4, 6, 7, 8 | knoppcnlem3 34246 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧)‘𝑚) ∈ ℝ) |
10 | 9 | recnd 10707 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧)‘𝑚) ∈ ℂ) |
11 | 10 | fmpttd 6870 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)):ℝ⟶ℂ) |
12 | cnex 10656 | . . . . 5 ⊢ ℂ ∈ V | |
13 | reex 10666 | . . . . 5 ⊢ ℝ ∈ V | |
14 | 12, 13 | pm3.2i 474 | . . . 4 ⊢ (ℂ ∈ V ∧ ℝ ∈ V) |
15 | elmapg 8429 | . . . 4 ⊢ ((ℂ ∈ V ∧ ℝ ∈ V) → ((𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ) ↔ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)):ℝ⟶ℂ)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ((𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ) ↔ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)):ℝ⟶ℂ) |
17 | 11, 16 | sylibr 237 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ)) |
18 | 17 | fmpttd 6870 | 1 ⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ↦ cmpt 5112 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ↑m cmap 8416 ℂcc 10573 ℝcr 10574 1c1 10576 + caddc 10578 · cmul 10580 − cmin 10908 / cdiv 11335 ℕcn 11674 2c2 11729 ℕ0cn0 11934 ⌊cfl 13209 ↑cexp 13479 abscabs 14641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-fl 13211 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 |
This theorem is referenced by: knoppcnlem6 34249 |
Copyright terms: Public domain | W3C validator |