| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppcn 36522. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppcnlem5.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppcnlem5.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppcnlem5.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppcnlem5.1 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| knoppcnlem5 | ⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppcnlem5.t | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | knoppcnlem5.f | . . . . . 6 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 3 | knoppcnlem5.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | 3 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑁 ∈ ℕ) |
| 5 | knoppcnlem5.1 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝐶 ∈ ℝ) |
| 7 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) | |
| 8 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑚 ∈ ℕ0) | |
| 9 | 1, 2, 4, 6, 7, 8 | knoppcnlem3 36513 | . . . . 5 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧)‘𝑚) ∈ ℝ) |
| 10 | 9 | recnd 11263 | . . . 4 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧)‘𝑚) ∈ ℂ) |
| 11 | 10 | fmpttd 7105 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)):ℝ⟶ℂ) |
| 12 | cnex 11210 | . . . . 5 ⊢ ℂ ∈ V | |
| 13 | reex 11220 | . . . . 5 ⊢ ℝ ∈ V | |
| 14 | 12, 13 | pm3.2i 470 | . . . 4 ⊢ (ℂ ∈ V ∧ ℝ ∈ V) |
| 15 | elmapg 8853 | . . . 4 ⊢ ((ℂ ∈ V ∧ ℝ ∈ V) → ((𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ) ↔ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)):ℝ⟶ℂ)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ((𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ) ↔ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)):ℝ⟶ℂ) |
| 17 | 11, 16 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ)) |
| 18 | 17 | fmpttd 7105 | 1 ⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℂcc 11127 ℝcr 11128 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 / cdiv 11894 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ⌊cfl 13807 ↑cexp 14079 abscabs 15253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fl 13809 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: knoppcnlem6 36516 |
| Copyright terms: Public domain | W3C validator |