Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem5 Structured version   Visualization version   GIF version

Theorem knoppcnlem5 36515
Description: Lemma for knoppcn 36522. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem5.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem5.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem5.n (𝜑𝑁 ∈ ℕ)
knoppcnlem5.1 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
knoppcnlem5 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ))
Distinct variable groups:   𝐶,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚,𝑛,𝑦,𝑧   𝑥,𝑚,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧,𝑚)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑧,𝑚,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem5
StepHypRef Expression
1 knoppcnlem5.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem5.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem5.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
43ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑁 ∈ ℕ)
5 knoppcnlem5.1 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
65ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝐶 ∈ ℝ)
7 simpr 484 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
8 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → 𝑚 ∈ ℕ0)
91, 2, 4, 6, 7, 8knoppcnlem3 36513 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝑚) ∈ ℝ)
109recnd 11263 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝑚) ∈ ℂ)
1110fmpttd 7105 . . 3 ((𝜑𝑚 ∈ ℕ0) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)):ℝ⟶ℂ)
12 cnex 11210 . . . . 5 ℂ ∈ V
13 reex 11220 . . . . 5 ℝ ∈ V
1412, 13pm3.2i 470 . . . 4 (ℂ ∈ V ∧ ℝ ∈ V)
15 elmapg 8853 . . . 4 ((ℂ ∈ V ∧ ℝ ∈ V) → ((𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ) ↔ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)):ℝ⟶ℂ))
1614, 15ax-mp 5 . . 3 ((𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ) ↔ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)):ℝ⟶ℂ)
1711, 16sylibr 234 . 2 ((𝜑𝑚 ∈ ℕ0) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) ∈ (ℂ ↑m ℝ))
1817fmpttd 7105 1 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  cc 11127  cr 11128  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cfl 13807  cexp 14079  abscabs 15253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by:  knoppcnlem6  36516
  Copyright terms: Public domain W3C validator