MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znnsub Structured version   Visualization version   GIF version

Theorem znnsub 12663
Description: The positive difference of unequal integers is a positive integer. (Generalization of nnsub 12310.) (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
znnsub ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))

Proof of Theorem znnsub
StepHypRef Expression
1 zre 12617 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 12617 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 posdif 11756 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ 0 < (𝑁𝑀)))
41, 2, 3syl2an 596 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁𝑀)))
5 zsubcl 12659 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
65ancoms 458 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
76biantrurd 532 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁𝑀) ↔ ((𝑁𝑀) ∈ ℤ ∧ 0 < (𝑁𝑀))))
84, 7bitrd 279 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ ((𝑁𝑀) ∈ ℤ ∧ 0 < (𝑁𝑀))))
9 elnnz 12623 . 2 ((𝑁𝑀) ∈ ℕ ↔ ((𝑁𝑀) ∈ ℤ ∧ 0 < (𝑁𝑀)))
108, 9bitr4di 289 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155   < clt 11295  cmin 11492  cn 12266  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  zltp1le  12667  uz2m1nn  12965  fzonnsub  13724  elfzodifsumelfzo  13770  ubmelm1fzo  13802  modfzo0difsn  13984  ltexp2a  14206  bcp1nk  14356  pc2dvds  16917  dvdsprmpweqle  16924  mndodconglem  19559  eucrctshift  30262  oddpwdc  34356  knoppndvlem2  36514  lcmineqlem8  42037  lcmineqlem10  42039  ltrabdioph  42819  goldbachthlem1  47532  digexp  48528
  Copyright terms: Public domain W3C validator