MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2b3 Structured version   Visualization version   GIF version

Theorem eluz2b3 11966
Description: Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))

Proof of Theorem eluz2b3
StepHypRef Expression
1 eluz2b2 11965 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
2 nngt1ne1 11250 . . 3 (𝑁 ∈ ℕ → (1 < 𝑁𝑁 ≠ 1))
32pm5.32i 558 . 2 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
41, 3bitri 264 1 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  wcel 2145  wne 2943   class class class wbr 4787  cfv 6032  1c1 10140   < clt 10277  cn 11223  2c2 11273  cuz 11889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-nn 11224  df-2 11282  df-n0 11496  df-z 11581  df-uz 11890
This theorem is referenced by:  1nuz2  11968  elnn1uz2  11969  nn01to3  11985  relexpuzrel  14001  nno  15307  ncoprmgcdne1b  15572  isprm2  15603  isprm4  15605  rpexp  15640  dfphi2  15687  dvdsprmpweqnn  15797  expnprm  15814  prmirredlem  20057  domnchr  20096  ovolicc1  23505  musum  25139  lgsne0  25282  2sqlem8a  25372  2sqlem8  25373  2sqlem9  25374  frgrregord013  27595  2sqcoprm  29988  ballotlemic  30909  ballotlem1c  30910  signstfveq0a  30994  subfacp1lem3  31503  stoweidlem14  40749  lighneallem3  42053  lighneallem4  42056  eluz2cnn0n1  42830
  Copyright terms: Public domain W3C validator