MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2b3 Structured version   Visualization version   GIF version

Theorem eluz2b3 12001
Description: Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))

Proof of Theorem eluz2b3
StepHypRef Expression
1 eluz2b2 12000 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
2 nngt1ne1 11345 . . 3 (𝑁 ∈ ℕ → (1 < 𝑁𝑁 ≠ 1))
32pm5.32i 566 . 2 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
41, 3bitri 266 1 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  wcel 2157  wne 2989   class class class wbr 4855  cfv 6111  1c1 10232   < clt 10369  cn 11315  2c2 11368  cuz 11924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-er 7989  df-en 8203  df-dom 8204  df-sdom 8205  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-nn 11316  df-2 11376  df-n0 11580  df-z 11664  df-uz 11925
This theorem is referenced by:  1nuz2  12003  elnn1uz2  12004  nn01to3  12020  relexpuzrel  14035  nno  15338  ncoprmgcdne1b  15602  isprm2  15633  isprm4  15635  rpexp  15669  dfphi2  15716  dvdsprmpweqnn  15826  expnprm  15843  prmirredlem  20069  domnchr  20108  ovolicc1  23520  musum  25154  lgsne0  25297  2sqlem8a  25387  2sqlem8  25388  2sqlem9  25389  frgrregord013  27606  2sqcoprm  29995  ballotlemic  30916  ballotlem1c  30917  signstfveq0a  31001  subfacp1lem3  31509  stoweidlem14  40728  lighneallem3  42117  lighneallem4  42120  eluz2cnn0n1  42887
  Copyright terms: Public domain W3C validator