MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2b3 Structured version   Visualization version   GIF version

Theorem eluz2b3 12404
Description: Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))

Proof of Theorem eluz2b3
StepHypRef Expression
1 eluz2b2 12403 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
2 nngt1ne1 11745 . . 3 (𝑁 ∈ ℕ → (1 < 𝑁𝑁 ≠ 1))
32pm5.32i 578 . 2 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
41, 3bitri 278 1 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wcel 2114  wne 2934   class class class wbr 5030  cfv 6339  1c1 10616   < clt 10753  cn 11716  2c2 11771  cuz 12324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-n0 11977  df-z 12063  df-uz 12325
This theorem is referenced by:  1nuz2  12406  elnn1uz2  12407  nn01to3  12423  relexpuzrel  14501  nno  15827  ncoprmgcdne1b  16091  isprm2  16123  isprm4  16125  rpexp  16163  dfphi2  16211  dvdsprmpweqnn  16321  expnprm  16338  prmirredlem  20313  domnchr  20351  ovolicc1  24268  logbgcd1irr  25532  musum  25928  lgsne0  26071  2sqlem8a  26161  2sqlem8  26162  2sqlem9  26163  2sqcoprm  26171  frgrregord013  28332  ballotlemic  32043  ballotlem1c  32044  signstfveq0a  32125  subfacp1lem3  32715  stoweidlem14  43097  lighneallem3  44593  lighneallem4  44596  eluz2cnn0n1  45386
  Copyright terms: Public domain W3C validator