MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressply1vsca Structured version   Visualization version   GIF version

Theorem ressply1vsca 22116
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressply1.s 𝑆 = (Poly1𝑅)
ressply1.h 𝐻 = (𝑅s 𝑇)
ressply1.u 𝑈 = (Poly1𝐻)
ressply1.b 𝐵 = (Base‘𝑈)
ressply1.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressply1vsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem ressply1vsca
StepHypRef Expression
1 eqid 2729 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 ressply1.h . . 3 𝐻 = (𝑅s 𝑇)
3 eqid 2729 . . 3 (1o mPoly 𝐻) = (1o mPoly 𝐻)
4 ressply1.u . . . 4 𝑈 = (Poly1𝐻)
5 ressply1.b . . . 4 𝐵 = (Base‘𝑈)
64, 5ply1bas 22079 . . 3 𝐵 = (Base‘(1o mPoly 𝐻))
7 1on 8446 . . . 4 1o ∈ On
87a1i 11 . . 3 (𝜑 → 1o ∈ On)
9 ressply1.2 . . 3 (𝜑𝑇 ∈ (SubRing‘𝑅))
10 eqid 2729 . . 3 ((1o mPoly 𝑅) ↾s 𝐵) = ((1o mPoly 𝑅) ↾s 𝐵)
111, 2, 3, 6, 8, 9, 10ressmplvsca 21938 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠 ‘(1o mPoly 𝐻))𝑌) = (𝑋( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))𝑌))
12 eqid 2729 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
134, 3, 12ply1vsca 22109 . . 3 ( ·𝑠𝑈) = ( ·𝑠 ‘(1o mPoly 𝐻))
1413oveqi 7400 . 2 (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠 ‘(1o mPoly 𝐻))𝑌)
15 ressply1.s . . . . 5 𝑆 = (Poly1𝑅)
16 eqid 2729 . . . . 5 ( ·𝑠𝑆) = ( ·𝑠𝑆)
1715, 1, 16ply1vsca 22109 . . . 4 ( ·𝑠𝑆) = ( ·𝑠 ‘(1o mPoly 𝑅))
185fvexi 6872 . . . . 5 𝐵 ∈ V
19 ressply1.p . . . . . 6 𝑃 = (𝑆s 𝐵)
2019, 16ressvsca 17307 . . . . 5 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
2118, 20ax-mp 5 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑃)
22 eqid 2729 . . . . . 6 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘(1o mPoly 𝑅))
2310, 22ressvsca 17307 . . . . 5 (𝐵 ∈ V → ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵)))
2418, 23ax-mp 5 . . . 4 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))
2517, 21, 243eqtr3i 2760 . . 3 ( ·𝑠𝑃) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))
2625oveqi 7400 . 2 (𝑋( ·𝑠𝑃)𝑌) = (𝑋( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))𝑌)
2711, 14, 263eqtr4g 2789 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  Oncon0 6332  cfv 6511  (class class class)co 7387  1oc1o 8427  Basecbs 17179  s cress 17200   ·𝑠 cvsca 17224  SubRingcsubrg 20478   mPoly cmpl 21815  Poly1cpl1 22061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-ple 17240  df-subg 19055  df-ring 20144  df-subrg 20479  df-psr 21818  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-ply1 22066
This theorem is referenced by:  evls1vsca  22260  asclply1subcl  22261
  Copyright terms: Public domain W3C validator