![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressply1vsca | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressply1.s | ⊢ 𝑆 = (Poly1‘𝑅) |
ressply1.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressply1.u | ⊢ 𝑈 = (Poly1‘𝐻) |
ressply1.b | ⊢ 𝐵 = (Base‘𝑈) |
ressply1.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressply1.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
Ref | Expression |
---|---|
ressply1vsca | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | ressply1.h | . . 3 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
3 | eqid 2736 | . . 3 ⊢ (1o mPoly 𝐻) = (1o mPoly 𝐻) | |
4 | ressply1.u | . . . 4 ⊢ 𝑈 = (Poly1‘𝐻) | |
5 | eqid 2736 | . . . 4 ⊢ (PwSer1‘𝐻) = (PwSer1‘𝐻) | |
6 | ressply1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
7 | 4, 5, 6 | ply1bas 21550 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝐻)) |
8 | 1on 8420 | . . . 4 ⊢ 1o ∈ On | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → 1o ∈ On) |
10 | ressply1.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
11 | eqid 2736 | . . 3 ⊢ ((1o mPoly 𝑅) ↾s 𝐵) = ((1o mPoly 𝑅) ↾s 𝐵) | |
12 | 1, 2, 3, 7, 9, 10, 11 | ressmplvsca 21416 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘(1o mPoly 𝐻))𝑌) = (𝑋( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))𝑌)) |
13 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
14 | 4, 3, 13 | ply1vsca 21581 | . . 3 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘(1o mPoly 𝐻)) |
15 | 14 | oveqi 7366 | . 2 ⊢ (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘(1o mPoly 𝐻))𝑌) |
16 | ressply1.s | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
17 | eqid 2736 | . . . . 5 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
18 | 16, 1, 17 | ply1vsca 21581 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘(1o mPoly 𝑅)) |
19 | 6 | fvexi 6853 | . . . . 5 ⊢ 𝐵 ∈ V |
20 | ressply1.p | . . . . . 6 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
21 | 20, 17 | ressvsca 17217 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
22 | 19, 21 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃) |
23 | eqid 2736 | . . . . . 6 ⊢ ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘(1o mPoly 𝑅)) | |
24 | 11, 23 | ressvsca 17217 | . . . . 5 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))) |
25 | 19, 24 | ax-mp 5 | . . . 4 ⊢ ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵)) |
26 | 18, 22, 25 | 3eqtr3i 2772 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵)) |
27 | 26 | oveqi 7366 | . 2 ⊢ (𝑋( ·𝑠 ‘𝑃)𝑌) = (𝑋( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))𝑌) |
28 | 12, 15, 27 | 3eqtr4g 2801 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3443 Oncon0 6315 ‘cfv 6493 (class class class)co 7353 1oc1o 8401 Basecbs 17075 ↾s cress 17104 ·𝑠 cvsca 17129 SubRingcsubrg 20203 mPoly cmpl 21293 PwSer1cps1 21530 Poly1cpl1 21532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7613 df-om 7799 df-1st 7917 df-2nd 7918 df-supp 8089 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-1o 8408 df-er 8644 df-map 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9302 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-nn 12150 df-2 12212 df-3 12213 df-4 12214 df-5 12215 df-6 12216 df-7 12217 df-8 12218 df-9 12219 df-n0 12410 df-z 12496 df-dec 12615 df-uz 12760 df-fz 13417 df-struct 17011 df-sets 17028 df-slot 17046 df-ndx 17058 df-base 17076 df-ress 17105 df-plusg 17138 df-mulr 17139 df-sca 17141 df-vsca 17142 df-tset 17144 df-ple 17145 df-subg 18916 df-ring 19952 df-subrg 20205 df-psr 21296 df-mpl 21298 df-opsr 21300 df-psr1 21535 df-ply1 21537 |
This theorem is referenced by: asclply1subcl 32158 |
Copyright terms: Public domain | W3C validator |