MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressply1vsca Structured version   Visualization version   GIF version

Theorem ressply1vsca 20394
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressply1.s 𝑆 = (Poly1𝑅)
ressply1.h 𝐻 = (𝑅s 𝑇)
ressply1.u 𝑈 = (Poly1𝐻)
ressply1.b 𝐵 = (Base‘𝑈)
ressply1.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressply1vsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem ressply1vsca
StepHypRef Expression
1 eqid 2821 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 ressply1.h . . 3 𝐻 = (𝑅s 𝑇)
3 eqid 2821 . . 3 (1o mPoly 𝐻) = (1o mPoly 𝐻)
4 ressply1.u . . . 4 𝑈 = (Poly1𝐻)
5 eqid 2821 . . . 4 (PwSer1𝐻) = (PwSer1𝐻)
6 ressply1.b . . . 4 𝐵 = (Base‘𝑈)
74, 5, 6ply1bas 20357 . . 3 𝐵 = (Base‘(1o mPoly 𝐻))
8 1on 8103 . . . 4 1o ∈ On
98a1i 11 . . 3 (𝜑 → 1o ∈ On)
10 ressply1.2 . . 3 (𝜑𝑇 ∈ (SubRing‘𝑅))
11 eqid 2821 . . 3 ((1o mPoly 𝑅) ↾s 𝐵) = ((1o mPoly 𝑅) ↾s 𝐵)
121, 2, 3, 7, 9, 10, 11ressmplvsca 20234 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠 ‘(1o mPoly 𝐻))𝑌) = (𝑋( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))𝑌))
13 eqid 2821 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
144, 3, 13ply1vsca 20388 . . 3 ( ·𝑠𝑈) = ( ·𝑠 ‘(1o mPoly 𝐻))
1514oveqi 7163 . 2 (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠 ‘(1o mPoly 𝐻))𝑌)
16 ressply1.s . . . . 5 𝑆 = (Poly1𝑅)
17 eqid 2821 . . . . 5 ( ·𝑠𝑆) = ( ·𝑠𝑆)
1816, 1, 17ply1vsca 20388 . . . 4 ( ·𝑠𝑆) = ( ·𝑠 ‘(1o mPoly 𝑅))
196fvexi 6679 . . . . 5 𝐵 ∈ V
20 ressply1.p . . . . . 6 𝑃 = (𝑆s 𝐵)
2120, 17ressvsca 16645 . . . . 5 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
2219, 21ax-mp 5 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑃)
23 eqid 2821 . . . . . 6 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘(1o mPoly 𝑅))
2411, 23ressvsca 16645 . . . . 5 (𝐵 ∈ V → ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵)))
2519, 24ax-mp 5 . . . 4 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))
2618, 22, 253eqtr3i 2852 . . 3 ( ·𝑠𝑃) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))
2726oveqi 7163 . 2 (𝑋( ·𝑠𝑃)𝑌) = (𝑋( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))𝑌)
2812, 15, 273eqtr4g 2881 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3495  Oncon0 6186  cfv 6350  (class class class)co 7150  1oc1o 8089  Basecbs 16477  s cress 16478   ·𝑠 cvsca 16563  SubRingcsubrg 19525   mPoly cmpl 20127  PwSer1cps1 20337  Poly1cpl1 20339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-tset 16578  df-ple 16579  df-subg 18270  df-ring 19293  df-subrg 19527  df-psr 20130  df-mpl 20132  df-opsr 20134  df-psr1 20342  df-ply1 20344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator