![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressply1vsca | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressply1.s | β’ π = (Poly1βπ ) |
ressply1.h | β’ π» = (π βΎs π) |
ressply1.u | β’ π = (Poly1βπ») |
ressply1.b | β’ π΅ = (Baseβπ) |
ressply1.2 | β’ (π β π β (SubRingβπ )) |
ressply1.p | β’ π = (π βΎs π΅) |
Ref | Expression |
---|---|
ressply1vsca | β’ ((π β§ (π β π β§ π β π΅)) β (π( Β·π βπ)π) = (π( Β·π βπ)π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (1o mPoly π ) = (1o mPoly π ) | |
2 | ressply1.h | . . 3 β’ π» = (π βΎs π) | |
3 | eqid 2733 | . . 3 β’ (1o mPoly π») = (1o mPoly π») | |
4 | ressply1.u | . . . 4 β’ π = (Poly1βπ») | |
5 | eqid 2733 | . . . 4 β’ (PwSer1βπ») = (PwSer1βπ») | |
6 | ressply1.b | . . . 4 β’ π΅ = (Baseβπ) | |
7 | 4, 5, 6 | ply1bas 21719 | . . 3 β’ π΅ = (Baseβ(1o mPoly π»)) |
8 | 1on 8478 | . . . 4 β’ 1o β On | |
9 | 8 | a1i 11 | . . 3 β’ (π β 1o β On) |
10 | ressply1.2 | . . 3 β’ (π β π β (SubRingβπ )) | |
11 | eqid 2733 | . . 3 β’ ((1o mPoly π ) βΎs π΅) = ((1o mPoly π ) βΎs π΅) | |
12 | 1, 2, 3, 7, 9, 10, 11 | ressmplvsca 21586 | . 2 β’ ((π β§ (π β π β§ π β π΅)) β (π( Β·π β(1o mPoly π»))π) = (π( Β·π β((1o mPoly π ) βΎs π΅))π)) |
13 | eqid 2733 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
14 | 4, 3, 13 | ply1vsca 21748 | . . 3 β’ ( Β·π βπ) = ( Β·π β(1o mPoly π»)) |
15 | 14 | oveqi 7422 | . 2 β’ (π( Β·π βπ)π) = (π( Β·π β(1o mPoly π»))π) |
16 | ressply1.s | . . . . 5 β’ π = (Poly1βπ ) | |
17 | eqid 2733 | . . . . 5 β’ ( Β·π βπ) = ( Β·π βπ) | |
18 | 16, 1, 17 | ply1vsca 21748 | . . . 4 β’ ( Β·π βπ) = ( Β·π β(1o mPoly π )) |
19 | 6 | fvexi 6906 | . . . . 5 β’ π΅ β V |
20 | ressply1.p | . . . . . 6 β’ π = (π βΎs π΅) | |
21 | 20, 17 | ressvsca 17289 | . . . . 5 β’ (π΅ β V β ( Β·π βπ) = ( Β·π βπ)) |
22 | 19, 21 | ax-mp 5 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) |
23 | eqid 2733 | . . . . . 6 β’ ( Β·π β(1o mPoly π )) = ( Β·π β(1o mPoly π )) | |
24 | 11, 23 | ressvsca 17289 | . . . . 5 β’ (π΅ β V β ( Β·π β(1o mPoly π )) = ( Β·π β((1o mPoly π ) βΎs π΅))) |
25 | 19, 24 | ax-mp 5 | . . . 4 β’ ( Β·π β(1o mPoly π )) = ( Β·π β((1o mPoly π ) βΎs π΅)) |
26 | 18, 22, 25 | 3eqtr3i 2769 | . . 3 β’ ( Β·π βπ) = ( Β·π β((1o mPoly π ) βΎs π΅)) |
27 | 26 | oveqi 7422 | . 2 β’ (π( Β·π βπ)π) = (π( Β·π β((1o mPoly π ) βΎs π΅))π) |
28 | 12, 15, 27 | 3eqtr4g 2798 | 1 β’ ((π β§ (π β π β§ π β π΅)) β (π( Β·π βπ)π) = (π( Β·π βπ)π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 Oncon0 6365 βcfv 6544 (class class class)co 7409 1oc1o 8459 Basecbs 17144 βΎs cress 17173 Β·π cvsca 17201 SubRingcsubrg 20315 mPoly cmpl 21459 PwSer1cps1 21699 Poly1cpl1 21701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-tset 17216 df-ple 17217 df-subg 19003 df-ring 20058 df-subrg 20317 df-psr 21462 df-mpl 21464 df-opsr 21466 df-psr1 21704 df-ply1 21706 |
This theorem is referenced by: evls1vsca 32650 asclply1subcl 32660 |
Copyright terms: Public domain | W3C validator |