| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resipos | Structured version Visualization version GIF version | ||
| Description: A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| resipos.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} |
| Ref | Expression |
|---|---|
| resipos | ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resipos.k | . . . 4 ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} | |
| 2 | prex 5377 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | . . 3 ⊢ 𝐾 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ V) |
| 5 | 1 | resiposbas 49098 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) |
| 6 | resiexg 7848 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ( I ↾ 𝐵) ∈ V) | |
| 7 | basendxltplendx 17275 | . . . 4 ⊢ (Base‘ndx) < (le‘ndx) | |
| 8 | plendxnn 17274 | . . . 4 ⊢ (le‘ndx) ∈ ℕ | |
| 9 | pleid 17273 | . . . 4 ⊢ le = Slot (le‘ndx) | |
| 10 | 1, 7, 8, 9 | 2strop 17142 | . . 3 ⊢ (( I ↾ 𝐵) ∈ V → ( I ↾ 𝐵) = (le‘𝐾)) |
| 11 | 6, 10 | syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → ( I ↾ 𝐵) = (le‘𝐾)) |
| 12 | equid 2013 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 13 | resieq 5943 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) | |
| 14 | 13 | anidms 566 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) |
| 15 | 12, 14 | mpbiri 258 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥( I ↾ 𝐵)𝑥) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥( I ↾ 𝐵)𝑥) |
| 17 | resieq 5943 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑦 ↔ 𝑥 = 𝑦)) | |
| 18 | 17 | biimpd 229 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑦 → 𝑥 = 𝑦)) |
| 19 | 18 | adantrd 491 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑥) → 𝑥 = 𝑦)) |
| 20 | 19 | 3adant1 1130 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑥) → 𝑥 = 𝑦)) |
| 21 | eqtr 2753 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧) | |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧)) |
| 23 | simpr1 1195 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
| 24 | simpr2 1196 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 25 | 23, 24, 17 | syl2anc 584 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( I ↾ 𝐵)𝑦 ↔ 𝑥 = 𝑦)) |
| 26 | simpr3 1197 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | |
| 27 | resieq 5943 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦( I ↾ 𝐵)𝑧 ↔ 𝑦 = 𝑧)) | |
| 28 | 24, 26, 27 | syl2anc 584 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦( I ↾ 𝐵)𝑧 ↔ 𝑦 = 𝑧)) |
| 29 | 25, 28 | anbi12d 632 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑧) ↔ (𝑥 = 𝑦 ∧ 𝑦 = 𝑧))) |
| 30 | resieq 5943 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑧 ↔ 𝑥 = 𝑧)) | |
| 31 | 23, 26, 30 | syl2anc 584 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( I ↾ 𝐵)𝑧 ↔ 𝑥 = 𝑧)) |
| 32 | 22, 29, 31 | 3imtr4d 294 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑧) → 𝑥( I ↾ 𝐵)𝑧)) |
| 33 | 4, 5, 11, 16, 20, 32 | isposd 18230 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {cpr 4577 〈cop 4581 class class class wbr 5093 I cid 5513 ↾ cres 5621 ‘cfv 6486 ndxcnx 17106 Basecbs 17122 lecple 17170 Posetcpo 18215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-ple 17183 df-poset 18221 |
| This theorem is referenced by: exbaspos 49100 exbasprs 49101 basresprsfo 49103 discbas 49697 discthin 49698 |
| Copyright terms: Public domain | W3C validator |