| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resipos | Structured version Visualization version GIF version | ||
| Description: A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| resipos.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} |
| Ref | Expression |
|---|---|
| resipos | ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resipos.k | . . . 4 ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} | |
| 2 | prex 5405 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | . . 3 ⊢ 𝐾 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ V) |
| 5 | 1 | resiposbas 48842 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) |
| 6 | resiexg 7903 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ( I ↾ 𝐵) ∈ V) | |
| 7 | basendxltplendx 17370 | . . . 4 ⊢ (Base‘ndx) < (le‘ndx) | |
| 8 | plendxnn 17369 | . . . 4 ⊢ (le‘ndx) ∈ ℕ | |
| 9 | pleid 17368 | . . . 4 ⊢ le = Slot (le‘ndx) | |
| 10 | 1, 7, 8, 9 | 2strop 17237 | . . 3 ⊢ (( I ↾ 𝐵) ∈ V → ( I ↾ 𝐵) = (le‘𝐾)) |
| 11 | 6, 10 | syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → ( I ↾ 𝐵) = (le‘𝐾)) |
| 12 | equid 2010 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 13 | resieq 5975 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) | |
| 14 | 13 | anidms 566 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) |
| 15 | 12, 14 | mpbiri 258 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥( I ↾ 𝐵)𝑥) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥( I ↾ 𝐵)𝑥) |
| 17 | resieq 5975 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑦 ↔ 𝑥 = 𝑦)) | |
| 18 | 17 | biimpd 229 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑦 → 𝑥 = 𝑦)) |
| 19 | 18 | adantrd 491 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑥) → 𝑥 = 𝑦)) |
| 20 | 19 | 3adant1 1130 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑥) → 𝑥 = 𝑦)) |
| 21 | eqtr 2754 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧) | |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧)) |
| 23 | simpr1 1194 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
| 24 | simpr2 1195 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 25 | 23, 24, 17 | syl2anc 584 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( I ↾ 𝐵)𝑦 ↔ 𝑥 = 𝑦)) |
| 26 | simpr3 1196 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | |
| 27 | resieq 5975 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦( I ↾ 𝐵)𝑧 ↔ 𝑦 = 𝑧)) | |
| 28 | 24, 26, 27 | syl2anc 584 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦( I ↾ 𝐵)𝑧 ↔ 𝑦 = 𝑧)) |
| 29 | 25, 28 | anbi12d 632 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑧) ↔ (𝑥 = 𝑦 ∧ 𝑦 = 𝑧))) |
| 30 | resieq 5975 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑧 ↔ 𝑥 = 𝑧)) | |
| 31 | 23, 26, 30 | syl2anc 584 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( I ↾ 𝐵)𝑧 ↔ 𝑥 = 𝑧)) |
| 32 | 22, 29, 31 | 3imtr4d 294 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑧) → 𝑥( I ↾ 𝐵)𝑧)) |
| 33 | 4, 5, 11, 16, 20, 32 | isposd 18321 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3457 {cpr 4601 〈cop 4605 class class class wbr 5117 I cid 5545 ↾ cres 5654 ‘cfv 6528 ndxcnx 17199 Basecbs 17215 lecple 17265 Posetcpo 18306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-slot 17188 df-ndx 17200 df-base 17216 df-ple 17278 df-poset 18312 |
| This theorem is referenced by: exbaspos 48844 exbasprs 48845 basresprsfo 48847 discbas 49310 discthin 49311 |
| Copyright terms: Public domain | W3C validator |