| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resipos | Structured version Visualization version GIF version | ||
| Description: A set equipped with an order where no distinct elements are comparable is a poset. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| resipos.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} |
| Ref | Expression |
|---|---|
| resipos | ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resipos.k | . . . 4 ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} | |
| 2 | prex 5412 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ( I ↾ 𝐵)〉} ∈ V | |
| 3 | 1, 2 | eqeltri 2831 | . . 3 ⊢ 𝐾 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ V) |
| 5 | 1 | resiposbas 48915 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) |
| 6 | resiexg 7913 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ( I ↾ 𝐵) ∈ V) | |
| 7 | basendxltplendx 17388 | . . . 4 ⊢ (Base‘ndx) < (le‘ndx) | |
| 8 | plendxnn 17387 | . . . 4 ⊢ (le‘ndx) ∈ ℕ | |
| 9 | pleid 17386 | . . . 4 ⊢ le = Slot (le‘ndx) | |
| 10 | 1, 7, 8, 9 | 2strop 17255 | . . 3 ⊢ (( I ↾ 𝐵) ∈ V → ( I ↾ 𝐵) = (le‘𝐾)) |
| 11 | 6, 10 | syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → ( I ↾ 𝐵) = (le‘𝐾)) |
| 12 | equid 2012 | . . . 4 ⊢ 𝑥 = 𝑥 | |
| 13 | resieq 5982 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) | |
| 14 | 13 | anidms 566 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑥( I ↾ 𝐵)𝑥 ↔ 𝑥 = 𝑥)) |
| 15 | 12, 14 | mpbiri 258 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝑥( I ↾ 𝐵)𝑥) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥( I ↾ 𝐵)𝑥) |
| 17 | resieq 5982 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑦 ↔ 𝑥 = 𝑦)) | |
| 18 | 17 | biimpd 229 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑦 → 𝑥 = 𝑦)) |
| 19 | 18 | adantrd 491 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑥) → 𝑥 = 𝑦)) |
| 20 | 19 | 3adant1 1130 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑥) → 𝑥 = 𝑦)) |
| 21 | eqtr 2756 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧) | |
| 22 | 21 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧)) |
| 23 | simpr1 1195 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
| 24 | simpr2 1196 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 25 | 23, 24, 17 | syl2anc 584 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( I ↾ 𝐵)𝑦 ↔ 𝑥 = 𝑦)) |
| 26 | simpr3 1197 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | |
| 27 | resieq 5982 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦( I ↾ 𝐵)𝑧 ↔ 𝑦 = 𝑧)) | |
| 28 | 24, 26, 27 | syl2anc 584 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦( I ↾ 𝐵)𝑧 ↔ 𝑦 = 𝑧)) |
| 29 | 25, 28 | anbi12d 632 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑧) ↔ (𝑥 = 𝑦 ∧ 𝑦 = 𝑧))) |
| 30 | resieq 5982 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥( I ↾ 𝐵)𝑧 ↔ 𝑥 = 𝑧)) | |
| 31 | 23, 26, 30 | syl2anc 584 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( I ↾ 𝐵)𝑧 ↔ 𝑥 = 𝑧)) |
| 32 | 22, 29, 31 | 3imtr4d 294 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥( I ↾ 𝐵)𝑦 ∧ 𝑦( I ↾ 𝐵)𝑧) → 𝑥( I ↾ 𝐵)𝑧)) |
| 33 | 4, 5, 11, 16, 20, 32 | isposd 18339 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {cpr 4608 〈cop 4612 class class class wbr 5124 I cid 5552 ↾ cres 5661 ‘cfv 6536 ndxcnx 17217 Basecbs 17233 lecple 17283 Posetcpo 18324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-ple 17296 df-poset 18330 |
| This theorem is referenced by: exbaspos 48917 exbasprs 48918 basresprsfo 48920 discbas 49416 discthin 49417 |
| Copyright terms: Public domain | W3C validator |