MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzp1p1 Structured version   Visualization version   GIF version

Theorem eluzp1p1 12264
Description: Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.)
Assertion
Ref Expression
eluzp1p1 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))

Proof of Theorem eluzp1p1
StepHypRef Expression
1 peano2z 12017 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
213ad2ant1 1129 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑀 + 1) ∈ ℤ)
3 peano2z 12017 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
433ad2ant2 1130 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑁 + 1) ∈ ℤ)
5 zre 11979 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6 zre 11979 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
7 1re 10635 . . . . . 6 1 ∈ ℝ
8 leadd1 11102 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
97, 8mp3an3 1446 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
105, 6, 9syl2an 597 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 + 1) ≤ (𝑁 + 1)))
1110biimp3a 1465 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝑀 + 1) ≤ (𝑁 + 1))
122, 4, 113jca 1124 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → ((𝑀 + 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ (𝑀 + 1) ≤ (𝑁 + 1)))
13 eluz2 12243 . 2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
14 eluz2 12243 . 2 ((𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ (𝑀 + 1) ≤ (𝑁 + 1)))
1512, 13, 143imtr4i 294 1 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083  wcel 2110   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534  cle 10670  cz 11975  cuz 12237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238
This theorem is referenced by:  uzp1  12273  fzp1elp1  12954  seqcl2  13382  seqfveq2  13386  seqf1olem2  13404  seqid2  13410  seqcoll  13816  serf0  15031  efcllem  15425  prmind2  16023  pockthlem  16235  pockthg  16236  prmunb  16244  prmreclem4  16249  dvradcnv  25003  rplogsumlem1  26054  rplogsumlem2  26055  dchrisumlem2  26060  dchrisum0flb  26080  pntlemq  26171  pntlemr  26172  pntlemf  26175  axlowdimlem17  26738  fibp1  31654  subfacp1lem5  32426  poimirlem1  34887  poimirlem3  34889  poimirlem4  34890  poimirlem15  34901  poimirlem16  34902  poimirlem17  34903  poimirlem19  34905  poimirlem20  34906  poimirlem23  34909  fdc  35014  mettrifi  35026  expdiophlem1  39611  trclfvdecomr  40066
  Copyright terms: Public domain W3C validator