MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1gbas Structured version   Visualization version   GIF version

Theorem smndex1gbas 18586
Description: The constant functions (𝐺𝐾) are endofunctions on 0. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
Assertion
Ref Expression
smndex1gbas (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) ∈ (Base‘𝑀))
Distinct variable groups:   𝑥,𝑁   𝑛,𝐾,𝑥   𝑛,𝑁
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝐼(𝑥,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem smndex1gbas
StepHypRef Expression
1 elfzonn0 13478 . . . . . 6 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0)
21adantr 482 . . . . 5 ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 ∈ ℕ0) → 𝐾 ∈ ℕ0)
32ralrimiva 3140 . . . 4 (𝐾 ∈ (0..^𝑁) → ∀𝑥 ∈ ℕ0 𝐾 ∈ ℕ0)
4 eqid 2736 . . . . 5 (𝑥 ∈ ℕ0𝐾) = (𝑥 ∈ ℕ0𝐾)
54fmpt 7016 . . . 4 (∀𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ↔ (𝑥 ∈ ℕ0𝐾):ℕ0⟶ℕ0)
63, 5sylib 217 . . 3 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾):ℕ0⟶ℕ0)
7 nn0ex 12285 . . . 4 0 ∈ V
87, 7elmap 8690 . . 3 ((𝑥 ∈ ℕ0𝐾) ∈ (ℕ0m0) ↔ (𝑥 ∈ ℕ0𝐾):ℕ0⟶ℕ0)
96, 8sylibr 233 . 2 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) ∈ (ℕ0m0))
10 smndex1ibas.g . . . 4 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
1110a1i 11 . . 3 (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛)))
12 id 22 . . . . 5 (𝑛 = 𝐾𝑛 = 𝐾)
1312mpteq2dv 5183 . . . 4 (𝑛 = 𝐾 → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
1413adantl 483 . . 3 ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝐾))
15 id 22 . . 3 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁))
167mptex 7131 . . . 4 (𝑥 ∈ ℕ0𝐾) ∈ V
1716a1i 11 . . 3 (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0𝐾) ∈ V)
1811, 14, 15, 17fvmptd 6914 . 2 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) = (𝑥 ∈ ℕ0𝐾))
19 smndex1ibas.m . . . 4 𝑀 = (EndoFMnd‘ℕ0)
20 eqid 2736 . . . 4 (Base‘𝑀) = (Base‘𝑀)
2119, 20efmndbas 18555 . . 3 (Base‘𝑀) = (ℕ0m0)
2221a1i 11 . 2 (𝐾 ∈ (0..^𝑁) → (Base‘𝑀) = (ℕ0m0))
239, 18, 223eltr4d 2852 1 (𝐾 ∈ (0..^𝑁) → (𝐺𝐾) ∈ (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wral 3062  Vcvv 3437  cmpt 5164  wf 6454  cfv 6458  (class class class)co 7307  m cmap 8646  0cc0 10917  cn 12019  0cn0 12279  ..^cfzo 13428   mod cmo 13635  Basecbs 16957  EndoFMndcefmnd 18552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-fzo 13429  df-struct 16893  df-slot 16928  df-ndx 16940  df-base 16958  df-plusg 17020  df-tset 17026  df-efmnd 18553
This theorem is referenced by:  smndex1gid  18587  smndex1basss  18589  smndex1mgm  18591
  Copyright terms: Public domain W3C validator