Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndex1gbas | Structured version Visualization version GIF version |
Description: The constant functions (𝐺‘𝐾) are endofunctions on ℕ0. (Contributed by AV, 12-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
Ref | Expression |
---|---|
smndex1gbas | ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzonn0 13478 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | |
2 | 1 | adantr 482 | . . . . 5 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 ∈ ℕ0) → 𝐾 ∈ ℕ0) |
3 | 2 | ralrimiva 3140 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → ∀𝑥 ∈ ℕ0 𝐾 ∈ ℕ0) |
4 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾) | |
5 | 4 | fmpt 7016 | . . . 4 ⊢ (∀𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ↔ (𝑥 ∈ ℕ0 ↦ 𝐾):ℕ0⟶ℕ0) |
6 | 3, 5 | sylib 217 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾):ℕ0⟶ℕ0) |
7 | nn0ex 12285 | . . . 4 ⊢ ℕ0 ∈ V | |
8 | 7, 7 | elmap 8690 | . . 3 ⊢ ((𝑥 ∈ ℕ0 ↦ 𝐾) ∈ (ℕ0 ↑m ℕ0) ↔ (𝑥 ∈ ℕ0 ↦ 𝐾):ℕ0⟶ℕ0) |
9 | 6, 8 | sylibr 233 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ (ℕ0 ↑m ℕ0)) |
10 | smndex1ibas.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛))) |
12 | id 22 | . . . . 5 ⊢ (𝑛 = 𝐾 → 𝑛 = 𝐾) | |
13 | 12 | mpteq2dv 5183 | . . . 4 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
14 | 13 | adantl 483 | . . 3 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
15 | id 22 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁)) | |
16 | 7 | mptex 7131 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
17 | 16 | a1i 11 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V) |
18 | 11, 14, 15, 17 | fvmptd 6914 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
19 | smndex1ibas.m | . . . 4 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
20 | eqid 2736 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
21 | 19, 20 | efmndbas 18555 | . . 3 ⊢ (Base‘𝑀) = (ℕ0 ↑m ℕ0) |
22 | 21 | a1i 11 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (Base‘𝑀) = (ℕ0 ↑m ℕ0)) |
23 | 9, 18, 22 | 3eltr4d 2852 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 ↦ cmpt 5164 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 0cc0 10917 ℕcn 12019 ℕ0cn0 12279 ..^cfzo 13428 mod cmo 13635 Basecbs 16957 EndoFMndcefmnd 18552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-fzo 13429 df-struct 16893 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-tset 17026 df-efmnd 18553 |
This theorem is referenced by: smndex1gid 18587 smndex1basss 18589 smndex1mgm 18591 |
Copyright terms: Public domain | W3C validator |