Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndex1gbas | Structured version Visualization version GIF version |
Description: The constant functions (𝐺‘𝐾) are endofunctions on ℕ0. (Contributed by AV, 12-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
Ref | Expression |
---|---|
smndex1gbas | ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzonn0 13430 | . . . . . 6 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑥 ∈ ℕ0) → 𝐾 ∈ ℕ0) |
3 | 2 | ralrimiva 3110 | . . . 4 ⊢ (𝐾 ∈ (0..^𝑁) → ∀𝑥 ∈ ℕ0 𝐾 ∈ ℕ0) |
4 | eqid 2740 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾) | |
5 | 4 | fmpt 6981 | . . . 4 ⊢ (∀𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ↔ (𝑥 ∈ ℕ0 ↦ 𝐾):ℕ0⟶ℕ0) |
6 | 3, 5 | sylib 217 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾):ℕ0⟶ℕ0) |
7 | nn0ex 12239 | . . . 4 ⊢ ℕ0 ∈ V | |
8 | 7, 7 | elmap 8642 | . . 3 ⊢ ((𝑥 ∈ ℕ0 ↦ 𝐾) ∈ (ℕ0 ↑m ℕ0) ↔ (𝑥 ∈ ℕ0 ↦ 𝐾):ℕ0⟶ℕ0) |
9 | 6, 8 | sylibr 233 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ (ℕ0 ↑m ℕ0)) |
10 | smndex1ibas.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛))) |
12 | id 22 | . . . . 5 ⊢ (𝑛 = 𝐾 → 𝑛 = 𝐾) | |
13 | 12 | mpteq2dv 5181 | . . . 4 ⊢ (𝑛 = 𝐾 → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
14 | 13 | adantl 482 | . . 3 ⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝑛 = 𝐾) → (𝑥 ∈ ℕ0 ↦ 𝑛) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
15 | id 22 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (0..^𝑁)) | |
16 | 7 | mptex 7096 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V |
17 | 16 | a1i 11 | . . 3 ⊢ (𝐾 ∈ (0..^𝑁) → (𝑥 ∈ ℕ0 ↦ 𝐾) ∈ V) |
18 | 11, 14, 15, 17 | fvmptd 6879 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) = (𝑥 ∈ ℕ0 ↦ 𝐾)) |
19 | smndex1ibas.m | . . . 4 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
20 | eqid 2740 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
21 | 19, 20 | efmndbas 18508 | . . 3 ⊢ (Base‘𝑀) = (ℕ0 ↑m ℕ0) |
22 | 21 | a1i 11 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) → (Base‘𝑀) = (ℕ0 ↑m ℕ0)) |
23 | 9, 18, 22 | 3eltr4d 2856 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → (𝐺‘𝐾) ∈ (Base‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 ↦ cmpt 5162 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 ↑m cmap 8598 0cc0 10872 ℕcn 11973 ℕ0cn0 12233 ..^cfzo 13381 mod cmo 13587 Basecbs 16910 EndoFMndcefmnd 18505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 df-struct 16846 df-slot 16881 df-ndx 16893 df-base 16911 df-plusg 16973 df-tset 16979 df-efmnd 18506 |
This theorem is referenced by: smndex1gid 18540 smndex1basss 18542 smndex1mgm 18544 |
Copyright terms: Public domain | W3C validator |