![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1gbas | Structured version Visualization version GIF version |
Description: The constant functions (πΊβπΎ) are endofunctions on β0. (Contributed by AV, 12-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | β’ π = (EndoFMndββ0) |
smndex1ibas.n | β’ π β β |
smndex1ibas.i | β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
smndex1ibas.g | β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) |
Ref | Expression |
---|---|
smndex1gbas | β’ (πΎ β (0..^π) β (πΊβπΎ) β (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzonn0 13674 | . . . . . 6 β’ (πΎ β (0..^π) β πΎ β β0) | |
2 | 1 | adantr 480 | . . . . 5 β’ ((πΎ β (0..^π) β§ π₯ β β0) β πΎ β β0) |
3 | 2 | ralrimiva 3138 | . . . 4 β’ (πΎ β (0..^π) β βπ₯ β β0 πΎ β β0) |
4 | eqid 2724 | . . . . 5 β’ (π₯ β β0 β¦ πΎ) = (π₯ β β0 β¦ πΎ) | |
5 | 4 | fmpt 7101 | . . . 4 β’ (βπ₯ β β0 πΎ β β0 β (π₯ β β0 β¦ πΎ):β0βΆβ0) |
6 | 3, 5 | sylib 217 | . . 3 β’ (πΎ β (0..^π) β (π₯ β β0 β¦ πΎ):β0βΆβ0) |
7 | nn0ex 12475 | . . . 4 β’ β0 β V | |
8 | 7, 7 | elmap 8861 | . . 3 β’ ((π₯ β β0 β¦ πΎ) β (β0 βm β0) β (π₯ β β0 β¦ πΎ):β0βΆβ0) |
9 | 6, 8 | sylibr 233 | . 2 β’ (πΎ β (0..^π) β (π₯ β β0 β¦ πΎ) β (β0 βm β0)) |
10 | smndex1ibas.g | . . . 4 β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) | |
11 | 10 | a1i 11 | . . 3 β’ (πΎ β (0..^π) β πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π))) |
12 | id 22 | . . . . 5 β’ (π = πΎ β π = πΎ) | |
13 | 12 | mpteq2dv 5240 | . . . 4 β’ (π = πΎ β (π₯ β β0 β¦ π) = (π₯ β β0 β¦ πΎ)) |
14 | 13 | adantl 481 | . . 3 β’ ((πΎ β (0..^π) β§ π = πΎ) β (π₯ β β0 β¦ π) = (π₯ β β0 β¦ πΎ)) |
15 | id 22 | . . 3 β’ (πΎ β (0..^π) β πΎ β (0..^π)) | |
16 | 7 | mptex 7216 | . . . 4 β’ (π₯ β β0 β¦ πΎ) β V |
17 | 16 | a1i 11 | . . 3 β’ (πΎ β (0..^π) β (π₯ β β0 β¦ πΎ) β V) |
18 | 11, 14, 15, 17 | fvmptd 6995 | . 2 β’ (πΎ β (0..^π) β (πΊβπΎ) = (π₯ β β0 β¦ πΎ)) |
19 | smndex1ibas.m | . . . 4 β’ π = (EndoFMndββ0) | |
20 | eqid 2724 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
21 | 19, 20 | efmndbas 18786 | . . 3 β’ (Baseβπ) = (β0 βm β0) |
22 | 21 | a1i 11 | . 2 β’ (πΎ β (0..^π) β (Baseβπ) = (β0 βm β0)) |
23 | 9, 18, 22 | 3eltr4d 2840 | 1 β’ (πΎ β (0..^π) β (πΊβπΎ) β (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βwral 3053 Vcvv 3466 β¦ cmpt 5221 βΆwf 6529 βcfv 6533 (class class class)co 7401 βm cmap 8816 0cc0 11106 βcn 12209 β0cn0 12469 ..^cfzo 13624 mod cmo 13831 Basecbs 17143 EndoFMndcefmnd 18783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-tset 17215 df-efmnd 18784 |
This theorem is referenced by: smndex1gid 18818 smndex1basss 18820 smndex1mgm 18822 |
Copyright terms: Public domain | W3C validator |