MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem7 Structured version   Visualization version   GIF version

Theorem sqrlem7 14596
Description: Lemma for 01sqrex 14597. (Contributed by Mario Carneiro, 10-Jul-2013.) (Proof shortened by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem7
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . 3 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 sqrlem1.2 . . 3 𝐵 = sup(𝑆, ℝ, < )
3 sqrlem5.3 . . 3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 3sqrlem6 14595 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
51, 2sqrlem3 14592 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
65adantr 481 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
71, 2sqrlem4 14593 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
87adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
98simpld 495 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ+)
10 rpre 12385 . . . . . . . . . . 11 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
12 rpre 12385 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1312adantr 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
147, 13syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1514resqcld 13599 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ∈ ℝ)
1611, 15resubcld 11056 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1716adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1815, 11posdifd 11215 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) < 𝐴 ↔ 0 < (𝐴 − (𝐵↑2))))
1918biimpa 477 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < (𝐴 − (𝐵↑2)))
2017, 19elrpd 12416 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ+)
21 3rp 12383 . . . . . . 7 3 ∈ ℝ+
22 rpdivcl 12402 . . . . . . 7 (((𝐴 − (𝐵↑2)) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
2320, 21, 22sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
249, 23rpaddcld 12434 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+)
2514adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ)
2625recnd 10657 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℂ)
27 3nn 11704 . . . . . . . . . . 11 3 ∈ ℕ
28 nndivre 11666 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
2916, 27, 28sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3029adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3130recnd 10657 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ)
32 binom2 13567 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3326, 31, 32syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3415adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℝ)
3534recnd 10657 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℂ)
36 2re 11699 . . . . . . . . . 10 2 ∈ ℝ
3725, 30remulcld 10659 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
38 remulcl 10610 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
3936, 37, 38sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
4039recnd 10657 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℂ)
4130resqcld 13599 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℝ)
4241recnd 10657 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℂ)
4335, 40, 42addassd 10651 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
4433, 43eqtrd 2853 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
45 2cn 11700 . . . . . . . . . . . 12 2 ∈ ℂ
46 mulass 10613 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4745, 26, 31, 46mp3an2i 1457 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4847eqcomd 2824 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) = ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)))
4931sqvald 13495 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) = (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3)))
5048, 49oveq12d 7163 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
51 remulcl 10610 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
5236, 25, 51sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℝ)
5352recnd 10657 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℂ)
5453, 31, 31adddird 10654 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
5550, 54eqtr4d 2856 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)))
567simprd 496 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ≤ 1)
57 1red 10630 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 1 ∈ ℝ)
58 2rp 12382 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
5958a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 2 ∈ ℝ+)
6014, 57, 59lemul2d 12463 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ≤ 1 ↔ (2 · 𝐵) ≤ (2 · 1)))
6156, 60mpbid 233 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (2 · 𝐵) ≤ (2 · 1))
6261adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ (2 · 1))
63 2t1e2 11788 . . . . . . . . . . . . 13 (2 · 1) = 2
6462, 63breqtrdi 5098 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ 2)
6511adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ∈ ℝ)
66 1red 10630 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 1 ∈ ℝ)
6725sqge0d 13600 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 ≤ (𝐵↑2))
6865, 34addge01d 11216 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (0 ≤ (𝐵↑2) ↔ 𝐴 ≤ (𝐴 + (𝐵↑2))))
6967, 68mpbid 233 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ (𝐴 + (𝐵↑2)))
7065, 34, 65lesubaddd 11225 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 𝐴𝐴 ≤ (𝐴 + (𝐵↑2))))
7169, 70mpbird 258 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 𝐴)
72 simplr 765 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ 1)
7317, 65, 66, 71, 72letrd 10785 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 1)
74 1le3 11837 . . . . . . . . . . . . . . . 16 1 ≤ 3
75 1re 10629 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
76 3re 11705 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
77 letr 10722 . . . . . . . . . . . . . . . . . 18 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 3 ∈ ℝ) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
7875, 76, 77mp3an23 1444 . . . . . . . . . . . . . . . . 17 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
7917, 78syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
8074, 79mpan2i 693 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 1 → (𝐴 − (𝐵↑2)) ≤ 3))
8173, 80mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 3)
82 3t1e3 11790 . . . . . . . . . . . . . 14 (3 · 1) = 3
8381, 82breqtrrdi 5099 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ (3 · 1))
84 3pos 11730 . . . . . . . . . . . . . . 15 0 < 3
85 ledivmul 11504 . . . . . . . . . . . . . . . 16 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8675, 85mp3an2 1440 . . . . . . . . . . . . . . 15 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8776, 84, 86mpanr12 701 . . . . . . . . . . . . . 14 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8817, 87syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8983, 88mpbird 258 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ≤ 1)
90 le2add 11110 . . . . . . . . . . . . . 14 ((((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) ∧ (2 ∈ ℝ ∧ 1 ∈ ℝ)) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9136, 75, 90mpanr12 701 . . . . . . . . . . . . 13 (((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9252, 30, 91syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9364, 89, 92mp2and 695 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1))
94 df-3 11689 . . . . . . . . . . 11 3 = (2 + 1)
9593, 94breqtrrdi 5099 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3)
9652, 30readdcld 10658 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
9776a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 3 ∈ ℝ)
9896, 97, 23lemul1d 12462 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3 ↔ (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3))))
9995, 98mpbid 233 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3)))
10017recnd 10657 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℂ)
101 3cn 11706 . . . . . . . . . . 11 3 ∈ ℂ
102 3ne0 11731 . . . . . . . . . . 11 3 ≠ 0
103 divcan2 11294 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
104101, 102, 103mp3an23 1444 . . . . . . . . . 10 ((𝐴 − (𝐵↑2)) ∈ ℂ → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
105100, 104syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
10699, 105breqtrd 5083 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (𝐴 − (𝐵↑2)))
10755, 106eqbrtrd 5079 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2)))
10839, 41readdcld 10658 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ∈ ℝ)
10934, 108, 65leaddsub2d 11230 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴 ↔ ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2))))
110107, 109mpbird 258 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴)
11144, 110eqbrtrd 5079 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴)
112 oveq1 7152 . . . . . . 7 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → (𝑦↑2) = ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2))
113112breq1d 5067 . . . . . 6 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → ((𝑦↑2) ≤ 𝐴 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
114 oveq1 7152 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
115114breq1d 5067 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴))
116115cbvrabv 3489 . . . . . . 7 {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
1171, 116eqtri 2841 . . . . . 6 𝑆 = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
118113, 117elrab2 3680 . . . . 5 ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+ ∧ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
11924, 111, 118sylanbrc 583 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆)
120 suprub 11590 . . . . 5 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ sup(𝑆, ℝ, < ))
121120, 2breqtrrdi 5099 . . . 4 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
1226, 119, 121syl2anc 584 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
12323rpgt0d 12422 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < ((𝐴 − (𝐵↑2)) / 3))
12429, 14ltaddposd 11212 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ 𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3))))
12514, 29readdcld 10658 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
12614, 125ltnled 10775 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
127124, 126bitrd 280 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
128127biimpa 477 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ 0 < ((𝐴 − (𝐵↑2)) / 3)) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
129123, 128syldan 591 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
130122, 129pm2.65da 813 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ¬ (𝐵↑2) < 𝐴)
13115, 11eqleltd 10772 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) = 𝐴 ↔ ((𝐵↑2) ≤ 𝐴 ∧ ¬ (𝐵↑2) < 𝐴)))
1324, 130, 131mpbir2and 709 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {cab 2796  wne 3013  wral 3135  wrex 3136  {crab 3139  wss 3933  c0 4288   class class class wbr 5057  (class class class)co 7145  supcsup 8892  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  3c3 11681  +crp 12377  cexp 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418
This theorem is referenced by:  01sqrex  14597
  Copyright terms: Public domain W3C validator