MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem7 Structured version   Visualization version   GIF version

Theorem sqrlem7 15029
Description: Lemma for 01sqrex 15030. (Contributed by Mario Carneiro, 10-Jul-2013.) (Proof shortened by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem7
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . 3 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 sqrlem1.2 . . 3 𝐵 = sup(𝑆, ℝ, < )
3 sqrlem5.3 . . 3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 3sqrlem6 15028 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
51, 2sqrlem3 15025 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
65adantr 481 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
71, 2sqrlem4 15026 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
87adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
98simpld 495 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ+)
10 rpre 12808 . . . . . . . . . . 11 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
12 rpre 12808 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1312adantr 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
147, 13syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1514resqcld 14035 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ∈ ℝ)
1611, 15resubcld 11473 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1716adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1815, 11posdifd 11632 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) < 𝐴 ↔ 0 < (𝐴 − (𝐵↑2))))
1918biimpa 477 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < (𝐴 − (𝐵↑2)))
2017, 19elrpd 12839 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ+)
21 3rp 12806 . . . . . . 7 3 ∈ ℝ+
22 rpdivcl 12825 . . . . . . 7 (((𝐴 − (𝐵↑2)) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
2320, 21, 22sylancl 586 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
249, 23rpaddcld 12857 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+)
2514adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ)
2625recnd 11073 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℂ)
27 3nn 12122 . . . . . . . . . . 11 3 ∈ ℕ
28 nndivre 12084 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
2916, 27, 28sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3029adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3130recnd 11073 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ)
32 binom2 14003 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3326, 31, 32syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3415adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℝ)
3534recnd 11073 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℂ)
36 2re 12117 . . . . . . . . . 10 2 ∈ ℝ
3725, 30remulcld 11075 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
38 remulcl 11026 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
3936, 37, 38sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
4039recnd 11073 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℂ)
4130resqcld 14035 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℝ)
4241recnd 11073 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℂ)
4335, 40, 42addassd 11067 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
4433, 43eqtrd 2777 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
45 2cn 12118 . . . . . . . . . . . 12 2 ∈ ℂ
46 mulass 11029 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4745, 26, 31, 46mp3an2i 1465 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4847eqcomd 2743 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) = ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)))
4931sqvald 13931 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) = (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3)))
5048, 49oveq12d 7331 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
51 remulcl 11026 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
5236, 25, 51sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℝ)
5352recnd 11073 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℂ)
5453, 31, 31adddird 11070 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
5550, 54eqtr4d 2780 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)))
567simprd 496 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ≤ 1)
57 1red 11046 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 1 ∈ ℝ)
58 2rp 12805 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
5958a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 2 ∈ ℝ+)
6014, 57, 59lemul2d 12886 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ≤ 1 ↔ (2 · 𝐵) ≤ (2 · 1)))
6156, 60mpbid 231 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (2 · 𝐵) ≤ (2 · 1))
6261adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ (2 · 1))
63 2t1e2 12206 . . . . . . . . . . . . 13 (2 · 1) = 2
6462, 63breqtrdi 5126 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ 2)
6511adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ∈ ℝ)
66 1red 11046 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 1 ∈ ℝ)
6725sqge0d 14036 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 ≤ (𝐵↑2))
6865, 34addge01d 11633 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (0 ≤ (𝐵↑2) ↔ 𝐴 ≤ (𝐴 + (𝐵↑2))))
6967, 68mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ (𝐴 + (𝐵↑2)))
7065, 34, 65lesubaddd 11642 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 𝐴𝐴 ≤ (𝐴 + (𝐵↑2))))
7169, 70mpbird 256 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 𝐴)
72 simplr 766 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ 1)
7317, 65, 66, 71, 72letrd 11202 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 1)
74 1le3 12255 . . . . . . . . . . . . . . . 16 1 ≤ 3
75 1re 11045 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
76 3re 12123 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
77 letr 11139 . . . . . . . . . . . . . . . . . 18 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 3 ∈ ℝ) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
7875, 76, 77mp3an23 1452 . . . . . . . . . . . . . . . . 17 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
7917, 78syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
8074, 79mpan2i 694 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 1 → (𝐴 − (𝐵↑2)) ≤ 3))
8173, 80mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 3)
82 3t1e3 12208 . . . . . . . . . . . . . 14 (3 · 1) = 3
8381, 82breqtrrdi 5127 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ (3 · 1))
84 3pos 12148 . . . . . . . . . . . . . . 15 0 < 3
85 ledivmul 11921 . . . . . . . . . . . . . . . 16 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8675, 85mp3an2 1448 . . . . . . . . . . . . . . 15 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8776, 84, 86mpanr12 702 . . . . . . . . . . . . . 14 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8817, 87syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8983, 88mpbird 256 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ≤ 1)
90 le2add 11527 . . . . . . . . . . . . . 14 ((((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) ∧ (2 ∈ ℝ ∧ 1 ∈ ℝ)) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9136, 75, 90mpanr12 702 . . . . . . . . . . . . 13 (((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9252, 30, 91syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9364, 89, 92mp2and 696 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1))
94 df-3 12107 . . . . . . . . . . 11 3 = (2 + 1)
9593, 94breqtrrdi 5127 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3)
9652, 30readdcld 11074 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
9776a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 3 ∈ ℝ)
9896, 97, 23lemul1d 12885 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3 ↔ (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3))))
9995, 98mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3)))
10017recnd 11073 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℂ)
101 3cn 12124 . . . . . . . . . . 11 3 ∈ ℂ
102 3ne0 12149 . . . . . . . . . . 11 3 ≠ 0
103 divcan2 11711 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
104101, 102, 103mp3an23 1452 . . . . . . . . . 10 ((𝐴 − (𝐵↑2)) ∈ ℂ → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
105100, 104syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
10699, 105breqtrd 5111 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (𝐴 − (𝐵↑2)))
10755, 106eqbrtrd 5107 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2)))
10839, 41readdcld 11074 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ∈ ℝ)
10934, 108, 65leaddsub2d 11647 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴 ↔ ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2))))
110107, 109mpbird 256 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴)
11144, 110eqbrtrd 5107 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴)
112 oveq1 7320 . . . . . . 7 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → (𝑦↑2) = ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2))
113112breq1d 5095 . . . . . 6 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → ((𝑦↑2) ≤ 𝐴 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
114 oveq1 7320 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
115114breq1d 5095 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴))
116115cbvrabv 3414 . . . . . . 7 {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
1171, 116eqtri 2765 . . . . . 6 𝑆 = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
118113, 117elrab2 3636 . . . . 5 ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+ ∧ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
11924, 111, 118sylanbrc 583 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆)
120 suprub 12006 . . . . 5 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ sup(𝑆, ℝ, < ))
121120, 2breqtrrdi 5127 . . . 4 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
1226, 119, 121syl2anc 584 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
12323rpgt0d 12845 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < ((𝐴 − (𝐵↑2)) / 3))
12429, 14ltaddposd 11629 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ 𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3))))
12514, 29readdcld 11074 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
12614, 125ltnled 11192 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
127124, 126bitrd 278 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
128127biimpa 477 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ 0 < ((𝐴 − (𝐵↑2)) / 3)) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
129123, 128syldan 591 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
130122, 129pm2.65da 814 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ¬ (𝐵↑2) < 𝐴)
13115, 11eqleltd 11189 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) = 𝐴 ↔ ((𝐵↑2) ≤ 𝐴 ∧ ¬ (𝐵↑2) < 𝐴)))
1324, 130, 131mpbir2and 710 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  {cab 2714  wne 2941  wral 3062  wrex 3071  {crab 3404  wss 3896  c0 4266   class class class wbr 5085  (class class class)co 7313  supcsup 9267  cc 10939  cr 10940  0cc0 10941  1c1 10942   + caddc 10944   · cmul 10946   < clt 11079  cle 11080  cmin 11275   / cdiv 11702  cn 12043  2c2 12098  3c3 12099  +crp 12800  cexp 13852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-sup 9269  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-z 12390  df-uz 12653  df-rp 12801  df-seq 13792  df-exp 13853
This theorem is referenced by:  01sqrex  15030
  Copyright terms: Public domain W3C validator