MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem7 Structured version   Visualization version   GIF version

Theorem sqrlem7 14210
Description: Lemma for 01sqrex 14211. (Contributed by Mario Carneiro, 10-Jul-2013.) (Proof shortened by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem7
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . 3 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 sqrlem1.2 . . 3 𝐵 = sup(𝑆, ℝ, < )
3 sqrlem5.3 . . 3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 3sqrlem6 14209 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
51, 2sqrlem3 14206 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
65adantr 468 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
71, 2sqrlem4 14207 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
87adantr 468 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
98simpld 484 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ+)
10 rpre 12051 . . . . . . . . . . 11 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110adantr 468 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
12 rpre 12051 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1312adantr 468 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
147, 13syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1514resqcld 13256 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ∈ ℝ)
1611, 15resubcld 10741 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1716adantr 468 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1815, 11posdifd 10897 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) < 𝐴 ↔ 0 < (𝐴 − (𝐵↑2))))
1918biimpa 464 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < (𝐴 − (𝐵↑2)))
2017, 19elrpd 12081 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ+)
21 3rp 12050 . . . . . . 7 3 ∈ ℝ+
22 rpdivcl 12068 . . . . . . 7 (((𝐴 − (𝐵↑2)) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
2320, 21, 22sylancl 576 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
249, 23rpaddcld 12099 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+)
2514adantr 468 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ)
2625recnd 10351 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℂ)
27 3nn 11461 . . . . . . . . . . 11 3 ∈ ℕ
28 nndivre 11340 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
2916, 27, 28sylancl 576 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3029adantr 468 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3130recnd 10351 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ)
32 binom2 13200 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3326, 31, 32syl2anc 575 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3415adantr 468 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℝ)
3534recnd 10351 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℂ)
36 2re 11372 . . . . . . . . . 10 2 ∈ ℝ
3725, 30remulcld 10353 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
38 remulcl 10304 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
3936, 37, 38sylancr 577 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
4039recnd 10351 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℂ)
4130resqcld 13256 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℝ)
4241recnd 10351 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℂ)
4335, 40, 42addassd 10345 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
4433, 43eqtrd 2838 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
45 2cn 11373 . . . . . . . . . . . 12 2 ∈ ℂ
46 mulass 10307 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4745, 26, 31, 46mp3an2i 1583 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4847eqcomd 2810 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) = ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)))
4931sqvald 13226 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) = (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3)))
5048, 49oveq12d 6890 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
51 remulcl 10304 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
5236, 25, 51sylancr 577 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℝ)
5352recnd 10351 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℂ)
5453, 31, 31adddird 10348 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
5550, 54eqtr4d 2841 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)))
567simprd 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ≤ 1)
57 1red 10324 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 1 ∈ ℝ)
58 2rp 12049 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
5958a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 2 ∈ ℝ+)
6014, 57, 59lemul2d 12128 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ≤ 1 ↔ (2 · 𝐵) ≤ (2 · 1)))
6156, 60mpbid 223 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (2 · 𝐵) ≤ (2 · 1))
6261adantr 468 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ (2 · 1))
63 2t1e2 11452 . . . . . . . . . . . . 13 (2 · 1) = 2
6462, 63syl6breq 4883 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ 2)
6511adantr 468 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ∈ ℝ)
66 1red 10324 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 1 ∈ ℝ)
6725sqge0d 13257 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 ≤ (𝐵↑2))
6865, 34addge01d 10898 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (0 ≤ (𝐵↑2) ↔ 𝐴 ≤ (𝐴 + (𝐵↑2))))
6967, 68mpbid 223 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ (𝐴 + (𝐵↑2)))
7065, 34, 65lesubaddd 10907 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 𝐴𝐴 ≤ (𝐴 + (𝐵↑2))))
7169, 70mpbird 248 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 𝐴)
72 simplr 776 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ 1)
7317, 65, 66, 71, 72letrd 10477 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 1)
74 1le3 11509 . . . . . . . . . . . . . . . 16 1 ≤ 3
75 1re 10323 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
76 3re 11376 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
77 letr 10414 . . . . . . . . . . . . . . . . . 18 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 3 ∈ ℝ) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
7875, 76, 77mp3an23 1570 . . . . . . . . . . . . . . . . 17 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
7917, 78syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
8074, 79mpan2i 680 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 1 → (𝐴 − (𝐵↑2)) ≤ 3))
8173, 80mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 3)
82 3t1e3 11454 . . . . . . . . . . . . . 14 (3 · 1) = 3
8381, 82syl6breqr 4884 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ (3 · 1))
84 3pos 11395 . . . . . . . . . . . . . . 15 0 < 3
85 ledivmul 11182 . . . . . . . . . . . . . . . 16 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8675, 85mp3an2 1566 . . . . . . . . . . . . . . 15 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8776, 84, 86mpanr12 688 . . . . . . . . . . . . . 14 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8817, 87syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8983, 88mpbird 248 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ≤ 1)
90 le2add 10793 . . . . . . . . . . . . . 14 ((((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) ∧ (2 ∈ ℝ ∧ 1 ∈ ℝ)) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9136, 75, 90mpanr12 688 . . . . . . . . . . . . 13 (((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9252, 30, 91syl2anc 575 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9364, 89, 92mp2and 682 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1))
94 df-3 11363 . . . . . . . . . . 11 3 = (2 + 1)
9593, 94syl6breqr 4884 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3)
9652, 30readdcld 10352 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
9776a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 3 ∈ ℝ)
9896, 97, 23lemul1d 12127 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3 ↔ (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3))))
9995, 98mpbid 223 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3)))
10017recnd 10351 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℂ)
101 3cn 11377 . . . . . . . . . . 11 3 ∈ ℂ
102 3ne0 11396 . . . . . . . . . . 11 3 ≠ 0
103 divcan2 10976 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
104101, 102, 103mp3an23 1570 . . . . . . . . . 10 ((𝐴 − (𝐵↑2)) ∈ ℂ → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
105100, 104syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
10699, 105breqtrd 4868 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (𝐴 − (𝐵↑2)))
10755, 106eqbrtrd 4864 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2)))
10839, 41readdcld 10352 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ∈ ℝ)
10934, 108, 65leaddsub2d 10912 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴 ↔ ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2))))
110107, 109mpbird 248 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴)
11144, 110eqbrtrd 4864 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴)
112 oveq1 6879 . . . . . . 7 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → (𝑦↑2) = ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2))
113112breq1d 4852 . . . . . 6 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → ((𝑦↑2) ≤ 𝐴 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
114 oveq1 6879 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
115114breq1d 4852 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴))
116115cbvrabv 3387 . . . . . . 7 {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
1171, 116eqtri 2826 . . . . . 6 𝑆 = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
118113, 117elrab2 3560 . . . . 5 ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+ ∧ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
11924, 111, 118sylanbrc 574 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆)
120 suprub 11267 . . . . 5 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ sup(𝑆, ℝ, < ))
121120, 2syl6breqr 4884 . . . 4 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
1226, 119, 121syl2anc 575 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
12323rpgt0d 12087 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < ((𝐴 − (𝐵↑2)) / 3))
12429, 14ltaddposd 10894 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ 𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3))))
12514, 29readdcld 10352 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
12614, 125ltnled 10467 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
127124, 126bitrd 270 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
128127biimpa 464 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ 0 < ((𝐴 − (𝐵↑2)) / 3)) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
129123, 128syldan 581 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
130122, 129pm2.65da 842 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ¬ (𝐵↑2) < 𝐴)
13115, 11eqleltd 10464 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) = 𝐴 ↔ ((𝐵↑2) ≤ 𝐴 ∧ ¬ (𝐵↑2) < 𝐴)))
1324, 130, 131mpbir2and 695 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  {cab 2790  wne 2976  wral 3094  wrex 3095  {crab 3098  wss 3767  c0 4114   class class class wbr 4842  (class class class)co 6872  supcsup 8583  cc 10217  cr 10218  0cc0 10219  1c1 10220   + caddc 10222   · cmul 10224   < clt 10357  cle 10358  cmin 10549   / cdiv 10967  cn 11303  2c2 11354  3c3 11355  +crp 12044  cexp 13081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-cnex 10275  ax-resscn 10276  ax-1cn 10277  ax-icn 10278  ax-addcl 10279  ax-addrcl 10280  ax-mulcl 10281  ax-mulrcl 10282  ax-mulcom 10283  ax-addass 10284  ax-mulass 10285  ax-distr 10286  ax-i2m1 10287  ax-1ne0 10288  ax-1rid 10289  ax-rnegex 10290  ax-rrecex 10291  ax-cnre 10292  ax-pre-lttri 10293  ax-pre-lttrn 10294  ax-pre-ltadd 10295  ax-pre-mulgt0 10296  ax-pre-sup 10297
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-nel 3080  df-ral 3099  df-rex 3100  df-reu 3101  df-rmo 3102  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5217  df-eprel 5222  df-po 5230  df-so 5231  df-fr 5268  df-we 5270  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-pred 5891  df-ord 5937  df-on 5938  df-lim 5939  df-suc 5940  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6833  df-ov 6875  df-oprab 6876  df-mpt2 6877  df-om 7294  df-2nd 7397  df-wrecs 7640  df-recs 7702  df-rdg 7740  df-er 7977  df-en 8191  df-dom 8192  df-sdom 8193  df-sup 8585  df-pnf 10359  df-mnf 10360  df-xr 10361  df-ltxr 10362  df-le 10363  df-sub 10551  df-neg 10552  df-div 10968  df-nn 11304  df-2 11362  df-3 11363  df-n0 11558  df-z 11642  df-uz 11903  df-rp 12045  df-seq 13023  df-exp 13082
This theorem is referenced by:  01sqrex  14211
  Copyright terms: Public domain W3C validator