![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wilthimp | Structured version Visualization version GIF version |
Description: The forward implication of Wilson's theorem wilth 27128 (see wilthlem3 27127), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.) |
Ref | Expression |
---|---|
wilthimp | ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wilth 27128 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))) | |
2 | eluz2nn 12921 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
3 | nnm1nn0 12564 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ0) |
5 | 4 | faccld 14319 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℕ) |
6 | 5 | nnzd 12637 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℤ) |
7 | 6 | peano2zd 12722 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) + 1) ∈ ℤ) |
8 | dvdsval3 16290 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ ((!‘(𝑃 − 1)) + 1) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) | |
9 | 2, 7, 8 | syl2anc 584 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) |
10 | 9 | biimpar 477 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) |
11 | 5 | nncnd 12279 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℂ) |
12 | 1cnd 11253 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 ∈ ℂ) | |
13 | 11, 12 | jca 511 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
15 | subneg 11555 | . . . . . . . 8 ⊢ (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) |
17 | 10, 16 | breqtrrd 5175 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)) |
18 | neg1z 12650 | . . . . . . . . . 10 ⊢ -1 ∈ ℤ | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → -1 ∈ ℤ) |
20 | 2, 6, 19 | 3jca 1127 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
22 | moddvds 16297 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) | |
23 | 21, 22 | syl 17 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) |
24 | 17, 23 | mpbird 257 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
25 | 24 | ex 412 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0 → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
26 | 9, 25 | sylbid 240 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
27 | 26 | imp 406 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
28 | 1, 27 | sylbi 217 | 1 ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 + caddc 11155 − cmin 11489 -cneg 11490 ℕcn 12263 2c2 12318 ℕ0cn0 12523 ℤcz 12610 ℤ≥cuz 12875 mod cmo 13905 !cfa 14308 ∥ cdvds 16286 ℙcprime 16704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-inf 9480 df-oi 9547 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-xnn0 12597 df-z 12611 df-dec 12731 df-uz 12876 df-rp 13032 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-fac 14309 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-gcd 16528 df-prm 16705 df-phi 16799 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17487 df-gsum 17488 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-grp 18966 df-minusg 18967 df-mulg 19098 df-subg 19153 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-cring 20253 df-subrng 20562 df-subrg 20586 df-cnfld 21382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |