| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wilthimp | Structured version Visualization version GIF version | ||
| Description: The forward implication of Wilson's theorem wilth 27018 (see wilthlem3 27017), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.) |
| Ref | Expression |
|---|---|
| wilthimp | ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wilth 27018 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))) | |
| 2 | eluz2nn 12796 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
| 3 | nnm1nn0 12432 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ0) |
| 5 | 4 | faccld 14201 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℕ) |
| 6 | 5 | nnzd 12505 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℤ) |
| 7 | 6 | peano2zd 12590 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) + 1) ∈ ℤ) |
| 8 | dvdsval3 16177 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ ((!‘(𝑃 − 1)) + 1) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) | |
| 9 | 2, 7, 8 | syl2anc 584 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) |
| 10 | 9 | biimpar 477 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) |
| 11 | 5 | nncnd 12151 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℂ) |
| 12 | 1cnd 11117 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 ∈ ℂ) | |
| 13 | 11, 12 | jca 511 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
| 15 | subneg 11420 | . . . . . . . 8 ⊢ (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) |
| 17 | 10, 16 | breqtrrd 5123 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)) |
| 18 | neg1z 12518 | . . . . . . . . . 10 ⊢ -1 ∈ ℤ | |
| 19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → -1 ∈ ℤ) |
| 20 | 2, 6, 19 | 3jca 1128 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
| 21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
| 22 | moddvds 16184 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) | |
| 23 | 21, 22 | syl 17 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) |
| 24 | 17, 23 | mpbird 257 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
| 25 | 24 | ex 412 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0 → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
| 26 | 9, 25 | sylbid 240 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
| 27 | 26 | imp 406 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
| 28 | 1, 27 | sylbi 217 | 1 ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 0cc0 11016 1c1 11017 + caddc 11019 − cmin 11354 -cneg 11355 ℕcn 12135 2c2 12190 ℕ0cn0 12391 ℤcz 12478 ℤ≥cuz 12742 mod cmo 13783 !cfa 14190 ∥ cdvds 16173 ℙcprime 16592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-sup 9336 df-inf 9337 df-oi 9406 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-xnn0 12465 df-z 12479 df-dec 12599 df-uz 12743 df-rp 12901 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-fac 14191 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-dvds 16174 df-gcd 16416 df-prm 16593 df-phi 16687 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-0g 17355 df-gsum 17356 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-mulg 18991 df-subg 19046 df-cntz 19239 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-subrng 20471 df-subrg 20495 df-cnfld 21302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |