| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wilthimp | Structured version Visualization version GIF version | ||
| Description: The forward implication of Wilson's theorem wilth 26988 (see wilthlem3 26987), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.) |
| Ref | Expression |
|---|---|
| wilthimp | ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wilth 26988 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))) | |
| 2 | eluz2nn 12854 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
| 3 | nnm1nn0 12490 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ0) |
| 5 | 4 | faccld 14256 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℕ) |
| 6 | 5 | nnzd 12563 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℤ) |
| 7 | 6 | peano2zd 12648 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) + 1) ∈ ℤ) |
| 8 | dvdsval3 16233 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ ((!‘(𝑃 − 1)) + 1) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) | |
| 9 | 2, 7, 8 | syl2anc 584 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) |
| 10 | 9 | biimpar 477 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) |
| 11 | 5 | nncnd 12209 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℂ) |
| 12 | 1cnd 11176 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 ∈ ℂ) | |
| 13 | 11, 12 | jca 511 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
| 15 | subneg 11478 | . . . . . . . 8 ⊢ (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) |
| 17 | 10, 16 | breqtrrd 5138 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)) |
| 18 | neg1z 12576 | . . . . . . . . . 10 ⊢ -1 ∈ ℤ | |
| 19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → -1 ∈ ℤ) |
| 20 | 2, 6, 19 | 3jca 1128 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
| 21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
| 22 | moddvds 16240 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) | |
| 23 | 21, 22 | syl 17 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) |
| 24 | 17, 23 | mpbird 257 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
| 25 | 24 | ex 412 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0 → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
| 26 | 9, 25 | sylbid 240 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
| 27 | 26 | imp 406 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
| 28 | 1, 27 | sylbi 217 | 1 ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 − cmin 11412 -cneg 11413 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 mod cmo 13838 !cfa 14245 ∥ cdvds 16229 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 df-phi 16743 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-gsum 17412 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-cnfld 21272 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |