MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthimp Structured version   Visualization version   GIF version

Theorem wilthimp 26989
Description: The forward implication of Wilson's theorem wilth 26988 (see wilthlem3 26987), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
wilthimp (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))

Proof of Theorem wilthimp
StepHypRef Expression
1 wilth 26988 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)))
2 eluz2nn 12854 . . . . 5 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
3 nnm1nn0 12490 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ0)
54faccld 14256 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℕ)
65nnzd 12563 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℤ)
76peano2zd 12648 . . . . 5 (𝑃 ∈ (ℤ‘2) → ((!‘(𝑃 − 1)) + 1) ∈ ℤ)
8 dvdsval3 16233 . . . . 5 ((𝑃 ∈ ℕ ∧ ((!‘(𝑃 − 1)) + 1) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0))
92, 7, 8syl2anc 584 . . . 4 (𝑃 ∈ (ℤ‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0))
109biimpar 477 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
115nncnd 12209 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℂ)
12 1cnd 11176 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → 1 ∈ ℂ)
1311, 12jca 511 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ))
1413adantr 480 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ))
15 subneg 11478 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
1614, 15syl 17 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
1710, 16breqtrrd 5138 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))
18 neg1z 12576 . . . . . . . . . 10 -1 ∈ ℤ
1918a1i 11 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → -1 ∈ ℤ)
202, 6, 193jca 1128 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ))
2120adantr 480 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ))
22 moddvds 16240 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)))
2321, 22syl 17 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)))
2417, 23mpbird 257 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
2524ex 412 . . . 4 (𝑃 ∈ (ℤ‘2) → ((((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0 → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)))
269, 25sylbid 240 . . 3 (𝑃 ∈ (ℤ‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)))
2726imp 406 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
281, 27sylbi 217 1 (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  -cneg 11413  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800   mod cmo 13838  !cfa 14245  cdvds 16229  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-cnfld 21272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator