![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wilthimp | Structured version Visualization version GIF version |
Description: The forward implication of Wilson's theorem wilth 25210 (see wilthlem3 25209), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.) |
Ref | Expression |
---|---|
wilthimp | ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wilth 25210 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))) | |
2 | eluz2nn 12008 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
3 | nnm1nn0 11661 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ0) |
5 | 4 | faccld 13364 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℕ) |
6 | 5 | nnzd 11809 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℤ) |
7 | 6 | peano2zd 11813 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) + 1) ∈ ℤ) |
8 | dvdsval3 15361 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ ((!‘(𝑃 − 1)) + 1) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) | |
9 | 2, 7, 8 | syl2anc 581 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0)) |
10 | 9 | biimpar 471 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) |
11 | 5 | nncnd 11368 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → (!‘(𝑃 − 1)) ∈ ℂ) |
12 | 1cnd 10351 | . . . . . . . . . 10 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 ∈ ℂ) | |
13 | 11, 12 | jca 509 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
14 | 13 | adantr 474 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ)) |
15 | subneg 10651 | . . . . . . . 8 ⊢ (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1)) |
17 | 10, 16 | breqtrrd 4901 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)) |
18 | neg1z 11741 | . . . . . . . . . 10 ⊢ -1 ∈ ℤ | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → -1 ∈ ℤ) |
20 | 2, 6, 19 | 3jca 1164 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
21 | 20 | adantr 474 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ)) |
22 | moddvds 15368 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) | |
23 | 21, 22 | syl 17 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))) |
24 | 17, 23 | mpbird 249 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
25 | 24 | ex 403 | . . . 4 ⊢ (𝑃 ∈ (ℤ≥‘2) → ((((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0 → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
26 | 9, 25 | sylbid 232 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))) |
27 | 26 | imp 397 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
28 | 1, 27 | sylbi 209 | 1 ⊢ (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 0cc0 10252 1c1 10253 + caddc 10255 − cmin 10585 -cneg 10586 ℕcn 11350 2c2 11406 ℕ0cn0 11618 ℤcz 11704 ℤ≥cuz 11968 mod cmo 12963 !cfa 13353 ∥ cdvds 15357 ℙcprime 15757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 ax-addf 10331 ax-mulf 10332 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-sup 8617 df-inf 8618 df-oi 8684 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 df-8 11420 df-9 11421 df-n0 11619 df-xnn0 11691 df-z 11705 df-dec 11822 df-uz 11969 df-rp 12113 df-fz 12620 df-fzo 12761 df-fl 12888 df-mod 12964 df-seq 13096 df-exp 13155 df-fac 13354 df-hash 13411 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-dvds 15358 df-gcd 15590 df-prm 15758 df-phi 15842 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-starv 16320 df-tset 16324 df-ple 16325 df-ds 16327 df-unif 16328 df-0g 16455 df-gsum 16456 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-submnd 17689 df-grp 17779 df-minusg 17780 df-mulg 17895 df-subg 17942 df-cntz 18100 df-cmn 18548 df-mgp 18844 df-ur 18856 df-ring 18903 df-cring 18904 df-subrg 19134 df-cnfld 20107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |