MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthimp Structured version   Visualization version   GIF version

Theorem wilthimp 25211
Description: The forward implication of Wilson's theorem wilth 25210 (see wilthlem3 25209), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
wilthimp (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))

Proof of Theorem wilthimp
StepHypRef Expression
1 wilth 25210 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)))
2 eluz2nn 12008 . . . . 5 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
3 nnm1nn0 11661 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ0)
54faccld 13364 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℕ)
65nnzd 11809 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℤ)
76peano2zd 11813 . . . . 5 (𝑃 ∈ (ℤ‘2) → ((!‘(𝑃 − 1)) + 1) ∈ ℤ)
8 dvdsval3 15361 . . . . 5 ((𝑃 ∈ ℕ ∧ ((!‘(𝑃 − 1)) + 1) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0))
92, 7, 8syl2anc 581 . . . 4 (𝑃 ∈ (ℤ‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0))
109biimpar 471 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
115nncnd 11368 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℂ)
12 1cnd 10351 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → 1 ∈ ℂ)
1311, 12jca 509 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ))
1413adantr 474 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ))
15 subneg 10651 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
1614, 15syl 17 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
1710, 16breqtrrd 4901 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))
18 neg1z 11741 . . . . . . . . . 10 -1 ∈ ℤ
1918a1i 11 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → -1 ∈ ℤ)
202, 6, 193jca 1164 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ))
2120adantr 474 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ))
22 moddvds 15368 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)))
2321, 22syl 17 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)))
2417, 23mpbird 249 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
2524ex 403 . . . 4 (𝑃 ∈ (ℤ‘2) → ((((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0 → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)))
269, 25sylbid 232 . . 3 (𝑃 ∈ (ℤ‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)))
2726imp 397 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
281, 27sylbi 209 1 (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4873  cfv 6123  (class class class)co 6905  cc 10250  0cc0 10252  1c1 10253   + caddc 10255  cmin 10585  -cneg 10586  cn 11350  2c2 11406  0cn0 11618  cz 11704  cuz 11968   mod cmo 12963  !cfa 13353  cdvds 15357  cprime 15757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-dec 11822  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-dvds 15358  df-gcd 15590  df-prm 15758  df-phi 15842  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-0g 16455  df-gsum 16456  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-mulg 17895  df-subg 17942  df-cntz 18100  df-cmn 18548  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-subrg 19134  df-cnfld 20107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator