MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthimp Structured version   Visualization version   GIF version

Theorem wilthimp 27100
Description: The forward implication of Wilson's theorem wilth 27099 (see wilthlem3 27098), expressed using the modulo operation: For any prime 𝑝 we have (𝑝 − 1)!≡ − 1 (mod 𝑝), see theorem 5.24 in [ApostolNT] p. 116. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
wilthimp (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))

Proof of Theorem wilthimp
StepHypRef Expression
1 wilth 27099 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)))
2 eluz2nn 12920 . . . . 5 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
3 nnm1nn0 12565 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ0)
54faccld 14301 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℕ)
65nnzd 12637 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℤ)
76peano2zd 12721 . . . . 5 (𝑃 ∈ (ℤ‘2) → ((!‘(𝑃 − 1)) + 1) ∈ ℤ)
8 dvdsval3 16260 . . . . 5 ((𝑃 ∈ ℕ ∧ ((!‘(𝑃 − 1)) + 1) ∈ ℤ) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0))
92, 7, 8syl2anc 582 . . . 4 (𝑃 ∈ (ℤ‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) ↔ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0))
109biimpar 476 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
115nncnd 12280 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → (!‘(𝑃 − 1)) ∈ ℂ)
12 1cnd 11259 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → 1 ∈ ℂ)
1311, 12jca 510 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ))
1413adantr 479 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ))
15 subneg 11559 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
1614, 15syl 17 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
1710, 16breqtrrd 5181 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → 𝑃 ∥ ((!‘(𝑃 − 1)) − -1))
18 neg1z 12650 . . . . . . . . . 10 -1 ∈ ℤ
1918a1i 11 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → -1 ∈ ℤ)
202, 6, 193jca 1125 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ))
2120adantr 479 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ))
22 moddvds 16267 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (!‘(𝑃 − 1)) ∈ ℤ ∧ -1 ∈ ℤ) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)))
2321, 22syl 17 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → (((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((!‘(𝑃 − 1)) − -1)))
2417, 23mpbird 256 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
2524ex 411 . . . 4 (𝑃 ∈ (ℤ‘2) → ((((!‘(𝑃 − 1)) + 1) mod 𝑃) = 0 → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)))
269, 25sylbid 239 . . 3 (𝑃 ∈ (ℤ‘2) → (𝑃 ∥ ((!‘(𝑃 − 1)) + 1) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃)))
2726imp 405 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑃 ∥ ((!‘(𝑃 − 1)) + 1)) → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
281, 27sylbi 216 1 (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) mod 𝑃) = (-1 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  0cc0 11158  1c1 11159   + caddc 11161  cmin 11494  -cneg 11495  cn 12264  2c2 12319  0cn0 12524  cz 12610  cuz 12874   mod cmo 13889  !cfa 14290  cdvds 16256  cprime 16672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237  ax-mulf 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257  df-gcd 16495  df-prm 16673  df-phi 16768  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-0g 17456  df-gsum 17457  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-grp 18931  df-minusg 18932  df-mulg 19062  df-subg 19117  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-cring 20219  df-subrng 20528  df-subrg 20553  df-cnfld 21344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator