Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapfcoa Structured version   Visualization version   GIF version

Theorem swapfcoa 49286
Description: Composition in the source category is mapped to composition in the target. (𝜑𝐶 ∈ Cat) and (𝜑𝐷 ∈ Cat) can be replaced by a weaker hypothesis (𝜑𝑆 ∈ Cat). (Contributed by Zhi Wang, 8-Oct-2025.)
Hypotheses
Ref Expression
swapfid.c (𝜑𝐶 ∈ Cat)
swapfid.d (𝜑𝐷 ∈ Cat)
swapfid.s 𝑆 = (𝐶 ×c 𝐷)
swapfid.t 𝑇 = (𝐷 ×c 𝐶)
swapfid.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapfida.b 𝐵 = (Base‘𝑆)
swapfida.x (𝜑𝑋𝐵)
swapfcoa.y (𝜑𝑌𝐵)
swapfcoa.z (𝜑𝑍𝐵)
swapfcoa.h 𝐻 = (Hom ‘𝑆)
swapfcoa.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
swapfcoa.n (𝜑𝑁 ∈ (𝑌𝐻𝑍))
swapfcoa.os · = (comp‘𝑆)
swapfcoa.ot = (comp‘𝑇)
Assertion
Ref Expression
swapfcoa (𝜑 → ((𝑋𝑃𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝑃𝑍)‘𝑁)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝑀)))

Proof of Theorem swapfcoa
StepHypRef Expression
1 swapfid.o . . . . . . . . 9 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
2 swapfid.s . . . . . . . . 9 𝑆 = (𝐶 ×c 𝐷)
3 swapfida.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
4 swapfida.x . . . . . . . . 9 (𝜑𝑋𝐵)
51, 2, 3, 4swapf1a 49274 . . . . . . . 8 (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
65fveq2d 6830 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑋)) = (1st ‘⟨(2nd𝑋), (1st𝑋)⟩))
7 fvex 6839 . . . . . . . 8 (2nd𝑋) ∈ V
8 fvex 6839 . . . . . . . 8 (1st𝑋) ∈ V
97, 8op1st 7939 . . . . . . 7 (1st ‘⟨(2nd𝑋), (1st𝑋)⟩) = (2nd𝑋)
106, 9eqtrdi 2780 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑋)) = (2nd𝑋))
11 swapfcoa.y . . . . . . . . 9 (𝜑𝑌𝐵)
121, 2, 3, 11swapf1a 49274 . . . . . . . 8 (𝜑 → (𝑂𝑌) = ⟨(2nd𝑌), (1st𝑌)⟩)
1312fveq2d 6830 . . . . . . 7 (𝜑 → (1st ‘(𝑂𝑌)) = (1st ‘⟨(2nd𝑌), (1st𝑌)⟩))
14 fvex 6839 . . . . . . . 8 (2nd𝑌) ∈ V
15 fvex 6839 . . . . . . . 8 (1st𝑌) ∈ V
1614, 15op1st 7939 . . . . . . 7 (1st ‘⟨(2nd𝑌), (1st𝑌)⟩) = (2nd𝑌)
1713, 16eqtrdi 2780 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑌)) = (2nd𝑌))
1810, 17opeq12d 4835 . . . . 5 (𝜑 → ⟨(1st ‘(𝑂𝑋)), (1st ‘(𝑂𝑌))⟩ = ⟨(2nd𝑋), (2nd𝑌)⟩)
19 swapfcoa.z . . . . . . . 8 (𝜑𝑍𝐵)
201, 2, 3, 19swapf1a 49274 . . . . . . 7 (𝜑 → (𝑂𝑍) = ⟨(2nd𝑍), (1st𝑍)⟩)
2120fveq2d 6830 . . . . . 6 (𝜑 → (1st ‘(𝑂𝑍)) = (1st ‘⟨(2nd𝑍), (1st𝑍)⟩))
22 fvex 6839 . . . . . . 7 (2nd𝑍) ∈ V
23 fvex 6839 . . . . . . 7 (1st𝑍) ∈ V
2422, 23op1st 7939 . . . . . 6 (1st ‘⟨(2nd𝑍), (1st𝑍)⟩) = (2nd𝑍)
2521, 24eqtrdi 2780 . . . . 5 (𝜑 → (1st ‘(𝑂𝑍)) = (2nd𝑍))
2618, 25oveq12d 7371 . . . 4 (𝜑 → (⟨(1st ‘(𝑂𝑋)), (1st ‘(𝑂𝑌))⟩(comp‘𝐷)(1st ‘(𝑂𝑍))) = (⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍)))
27 swapfcoa.h . . . . . . . 8 𝐻 = (Hom ‘𝑆)
2827a1i 11 . . . . . . 7 (𝜑𝐻 = (Hom ‘𝑆))
29 swapfcoa.n . . . . . . 7 (𝜑𝑁 ∈ (𝑌𝐻𝑍))
301, 2, 3, 11, 19, 28, 29swapf2a 49276 . . . . . 6 (𝜑 → ((𝑌𝑃𝑍)‘𝑁) = ⟨(2nd𝑁), (1st𝑁)⟩)
3130fveq2d 6830 . . . . 5 (𝜑 → (1st ‘((𝑌𝑃𝑍)‘𝑁)) = (1st ‘⟨(2nd𝑁), (1st𝑁)⟩))
32 fvex 6839 . . . . . 6 (2nd𝑁) ∈ V
33 fvex 6839 . . . . . 6 (1st𝑁) ∈ V
3432, 33op1st 7939 . . . . 5 (1st ‘⟨(2nd𝑁), (1st𝑁)⟩) = (2nd𝑁)
3531, 34eqtrdi 2780 . . . 4 (𝜑 → (1st ‘((𝑌𝑃𝑍)‘𝑁)) = (2nd𝑁))
36 swapfcoa.m . . . . . . 7 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
371, 2, 3, 4, 11, 28, 36swapf2a 49276 . . . . . 6 (𝜑 → ((𝑋𝑃𝑌)‘𝑀) = ⟨(2nd𝑀), (1st𝑀)⟩)
3837fveq2d 6830 . . . . 5 (𝜑 → (1st ‘((𝑋𝑃𝑌)‘𝑀)) = (1st ‘⟨(2nd𝑀), (1st𝑀)⟩))
39 fvex 6839 . . . . . 6 (2nd𝑀) ∈ V
40 fvex 6839 . . . . . 6 (1st𝑀) ∈ V
4139, 40op1st 7939 . . . . 5 (1st ‘⟨(2nd𝑀), (1st𝑀)⟩) = (2nd𝑀)
4238, 41eqtrdi 2780 . . . 4 (𝜑 → (1st ‘((𝑋𝑃𝑌)‘𝑀)) = (2nd𝑀))
4326, 35, 42oveq123d 7374 . . 3 (𝜑 → ((1st ‘((𝑌𝑃𝑍)‘𝑁))(⟨(1st ‘(𝑂𝑋)), (1st ‘(𝑂𝑌))⟩(comp‘𝐷)(1st ‘(𝑂𝑍)))(1st ‘((𝑋𝑃𝑌)‘𝑀))) = ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀)))
445fveq2d 6830 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑋)) = (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩))
457, 8op2nd 7940 . . . . . . 7 (2nd ‘⟨(2nd𝑋), (1st𝑋)⟩) = (1st𝑋)
4644, 45eqtrdi 2780 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑋)) = (1st𝑋))
4712fveq2d 6830 . . . . . . 7 (𝜑 → (2nd ‘(𝑂𝑌)) = (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩))
4814, 15op2nd 7940 . . . . . . 7 (2nd ‘⟨(2nd𝑌), (1st𝑌)⟩) = (1st𝑌)
4947, 48eqtrdi 2780 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑌)) = (1st𝑌))
5046, 49opeq12d 4835 . . . . 5 (𝜑 → ⟨(2nd ‘(𝑂𝑋)), (2nd ‘(𝑂𝑌))⟩ = ⟨(1st𝑋), (1st𝑌)⟩)
5120fveq2d 6830 . . . . . 6 (𝜑 → (2nd ‘(𝑂𝑍)) = (2nd ‘⟨(2nd𝑍), (1st𝑍)⟩))
5222, 23op2nd 7940 . . . . . 6 (2nd ‘⟨(2nd𝑍), (1st𝑍)⟩) = (1st𝑍)
5351, 52eqtrdi 2780 . . . . 5 (𝜑 → (2nd ‘(𝑂𝑍)) = (1st𝑍))
5450, 53oveq12d 7371 . . . 4 (𝜑 → (⟨(2nd ‘(𝑂𝑋)), (2nd ‘(𝑂𝑌))⟩(comp‘𝐶)(2nd ‘(𝑂𝑍))) = (⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍)))
5530fveq2d 6830 . . . . 5 (𝜑 → (2nd ‘((𝑌𝑃𝑍)‘𝑁)) = (2nd ‘⟨(2nd𝑁), (1st𝑁)⟩))
5632, 33op2nd 7940 . . . . 5 (2nd ‘⟨(2nd𝑁), (1st𝑁)⟩) = (1st𝑁)
5755, 56eqtrdi 2780 . . . 4 (𝜑 → (2nd ‘((𝑌𝑃𝑍)‘𝑁)) = (1st𝑁))
5837fveq2d 6830 . . . . 5 (𝜑 → (2nd ‘((𝑋𝑃𝑌)‘𝑀)) = (2nd ‘⟨(2nd𝑀), (1st𝑀)⟩))
5939, 40op2nd 7940 . . . . 5 (2nd ‘⟨(2nd𝑀), (1st𝑀)⟩) = (1st𝑀)
6058, 59eqtrdi 2780 . . . 4 (𝜑 → (2nd ‘((𝑋𝑃𝑌)‘𝑀)) = (1st𝑀))
6154, 57, 60oveq123d 7374 . . 3 (𝜑 → ((2nd ‘((𝑌𝑃𝑍)‘𝑁))(⟨(2nd ‘(𝑂𝑋)), (2nd ‘(𝑂𝑌))⟩(comp‘𝐶)(2nd ‘(𝑂𝑍)))(2nd ‘((𝑋𝑃𝑌)‘𝑀))) = ((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)))
6243, 61opeq12d 4835 . 2 (𝜑 → ⟨((1st ‘((𝑌𝑃𝑍)‘𝑁))(⟨(1st ‘(𝑂𝑋)), (1st ‘(𝑂𝑌))⟩(comp‘𝐷)(1st ‘(𝑂𝑍)))(1st ‘((𝑋𝑃𝑌)‘𝑀))), ((2nd ‘((𝑌𝑃𝑍)‘𝑁))(⟨(2nd ‘(𝑂𝑋)), (2nd ‘(𝑂𝑌))⟩(comp‘𝐶)(2nd ‘(𝑂𝑍)))(2nd ‘((𝑋𝑃𝑌)‘𝑀)))⟩ = ⟨((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀)), ((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀))⟩)
63 swapfid.t . . 3 𝑇 = (𝐷 ×c 𝐶)
64 eqid 2729 . . 3 (Base‘𝑇) = (Base‘𝑇)
65 eqid 2729 . . 3 (Hom ‘𝑇) = (Hom ‘𝑇)
66 eqid 2729 . . 3 (comp‘𝐷) = (comp‘𝐷)
67 eqid 2729 . . 3 (comp‘𝐶) = (comp‘𝐶)
68 swapfcoa.ot . . 3 = (comp‘𝑇)
69 swapfid.c . . . . . 6 (𝜑𝐶 ∈ Cat)
70 swapfid.d . . . . . 6 (𝜑𝐷 ∈ Cat)
711, 2, 63, 69, 70, 3, 64swapf1f1o 49280 . . . . 5 (𝜑𝑂:𝐵1-1-onto→(Base‘𝑇))
72 f1of 6768 . . . . 5 (𝑂:𝐵1-1-onto→(Base‘𝑇) → 𝑂:𝐵⟶(Base‘𝑇))
7371, 72syl 17 . . . 4 (𝜑𝑂:𝐵⟶(Base‘𝑇))
7473, 4ffvelcdmd 7023 . . 3 (𝜑 → (𝑂𝑋) ∈ (Base‘𝑇))
7573, 11ffvelcdmd 7023 . . 3 (𝜑 → (𝑂𝑌) ∈ (Base‘𝑇))
7673, 19ffvelcdmd 7023 . . 3 (𝜑 → (𝑂𝑍) ∈ (Base‘𝑇))
771, 2, 63, 27, 65, 3, 4, 11swapf2f1oa 49282 . . . . 5 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)(Hom ‘𝑇)(𝑂𝑌)))
78 f1of 6768 . . . . 5 ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)(Hom ‘𝑇)(𝑂𝑌)) → (𝑋𝑃𝑌):(𝑋𝐻𝑌)⟶((𝑂𝑋)(Hom ‘𝑇)(𝑂𝑌)))
7977, 78syl 17 . . . 4 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)⟶((𝑂𝑋)(Hom ‘𝑇)(𝑂𝑌)))
8079, 36ffvelcdmd 7023 . . 3 (𝜑 → ((𝑋𝑃𝑌)‘𝑀) ∈ ((𝑂𝑋)(Hom ‘𝑇)(𝑂𝑌)))
811, 2, 63, 27, 65, 3, 11, 19swapf2f1oa 49282 . . . . 5 (𝜑 → (𝑌𝑃𝑍):(𝑌𝐻𝑍)–1-1-onto→((𝑂𝑌)(Hom ‘𝑇)(𝑂𝑍)))
82 f1of 6768 . . . . 5 ((𝑌𝑃𝑍):(𝑌𝐻𝑍)–1-1-onto→((𝑂𝑌)(Hom ‘𝑇)(𝑂𝑍)) → (𝑌𝑃𝑍):(𝑌𝐻𝑍)⟶((𝑂𝑌)(Hom ‘𝑇)(𝑂𝑍)))
8381, 82syl 17 . . . 4 (𝜑 → (𝑌𝑃𝑍):(𝑌𝐻𝑍)⟶((𝑂𝑌)(Hom ‘𝑇)(𝑂𝑍)))
8483, 29ffvelcdmd 7023 . . 3 (𝜑 → ((𝑌𝑃𝑍)‘𝑁) ∈ ((𝑂𝑌)(Hom ‘𝑇)(𝑂𝑍)))
8563, 64, 65, 66, 67, 68, 74, 75, 76, 80, 84xpcco 18108 . 2 (𝜑 → (((𝑌𝑃𝑍)‘𝑁)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝑀)) = ⟨((1st ‘((𝑌𝑃𝑍)‘𝑁))(⟨(1st ‘(𝑂𝑋)), (1st ‘(𝑂𝑌))⟩(comp‘𝐷)(1st ‘(𝑂𝑍)))(1st ‘((𝑋𝑃𝑌)‘𝑀))), ((2nd ‘((𝑌𝑃𝑍)‘𝑁))(⟨(2nd ‘(𝑂𝑋)), (2nd ‘(𝑂𝑌))⟩(comp‘𝐶)(2nd ‘(𝑂𝑍)))(2nd ‘((𝑋𝑃𝑌)‘𝑀)))⟩)
86 swapfcoa.os . . . . 5 · = (comp‘𝑆)
872, 3, 27, 67, 66, 86, 4, 11, 19, 36, 29xpcco 18108 . . . 4 (𝜑 → (𝑁(⟨𝑋, 𝑌· 𝑍)𝑀) = ⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩)
8887fveq2d 6830 . . 3 (𝜑 → ((𝑋𝑃𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = ((𝑋𝑃𝑍)‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩))
892, 69, 70xpccat 18115 . . . . . . 7 (𝜑𝑆 ∈ Cat)
903, 27, 86, 89, 4, 11, 19, 36, 29catcocl 17610 . . . . . 6 (𝜑 → (𝑁(⟨𝑋, 𝑌· 𝑍)𝑀) ∈ (𝑋𝐻𝑍))
9187, 90eqeltrrd 2829 . . . . 5 (𝜑 → ⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩ ∈ (𝑋𝐻𝑍))
921, 2, 3, 4, 19, 28, 91swapf2a 49276 . . . 4 (𝜑 → ((𝑋𝑃𝑍)‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩) = ⟨(2nd ‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩), (1st ‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩)⟩)
93 ovex 7386 . . . . . 6 ((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)) ∈ V
94 ovex 7386 . . . . . 6 ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀)) ∈ V
9593, 94op2nd 7940 . . . . 5 (2nd ‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩) = ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))
9693, 94op1st 7939 . . . . 5 (1st ‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩) = ((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀))
9795, 96opeq12i 4832 . . . 4 ⟨(2nd ‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩), (1st ‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩)⟩ = ⟨((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀)), ((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀))⟩
9892, 97eqtrdi 2780 . . 3 (𝜑 → ((𝑋𝑃𝑍)‘⟨((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀)), ((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀))⟩) = ⟨((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀)), ((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀))⟩)
9988, 98eqtrd 2764 . 2 (𝜑 → ((𝑋𝑃𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = ⟨((2nd𝑁)(⟨(2nd𝑋), (2nd𝑌)⟩(comp‘𝐷)(2nd𝑍))(2nd𝑀)), ((1st𝑁)(⟨(1st𝑋), (1st𝑌)⟩(comp‘𝐶)(1st𝑍))(1st𝑀))⟩)
10062, 85, 993eqtr4rd 2775 1 (𝜑 → ((𝑋𝑃𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝑃𝑍)‘𝑁)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4585  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17139  Hom chom 17191  compcco 17192  Catccat 17589   ×c cxpc 18093   swapF cswapf 49264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-xpc 18097  df-swapf 49265
This theorem is referenced by:  swapffunc  49287
  Copyright terms: Public domain W3C validator