![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3wwlks2on | Structured version Visualization version GIF version |
Description: A length 3 string which represents a walk of length 2 between two vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) |
Ref | Expression |
---|---|
s3wwlks2on.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
s3wwlks2on | β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ© β (π΄(2 WWalksNOn πΊ)πΆ) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlknon 29378 | . . 3 β’ (β¨βπ΄π΅πΆββ© β (π΄(2 WWalksNOn πΊ)πΆ) β (β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β§ (β¨βπ΄π΅πΆββ©β0) = π΄ β§ (β¨βπ΄π΅πΆββ©β2) = πΆ)) | |
2 | 1 | a1i 11 | . 2 β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ© β (π΄(2 WWalksNOn πΊ)πΆ) β (β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β§ (β¨βπ΄π΅πΆββ©β0) = π΄ β§ (β¨βπ΄π΅πΆββ©β2) = πΆ))) |
3 | 3anass 1093 | . . 3 β’ ((β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β§ (β¨βπ΄π΅πΆββ©β0) = π΄ β§ (β¨βπ΄π΅πΆββ©β2) = πΆ) β (β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β§ ((β¨βπ΄π΅πΆββ©β0) = π΄ β§ (β¨βπ΄π΅πΆββ©β2) = πΆ))) | |
4 | s3fv0 14846 | . . . . . 6 β’ (π΄ β π β (β¨βπ΄π΅πΆββ©β0) = π΄) | |
5 | s3fv2 14848 | . . . . . 6 β’ (πΆ β π β (β¨βπ΄π΅πΆββ©β2) = πΆ) | |
6 | 4, 5 | anim12i 611 | . . . . 5 β’ ((π΄ β π β§ πΆ β π) β ((β¨βπ΄π΅πΆββ©β0) = π΄ β§ (β¨βπ΄π΅πΆββ©β2) = πΆ)) |
7 | 6 | 3adant1 1128 | . . . 4 β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β ((β¨βπ΄π΅πΆββ©β0) = π΄ β§ (β¨βπ΄π΅πΆββ©β2) = πΆ)) |
8 | 7 | biantrud 530 | . . 3 β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β (β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β§ ((β¨βπ΄π΅πΆββ©β0) = π΄ β§ (β¨βπ΄π΅πΆββ©β2) = πΆ)))) |
9 | 3, 8 | bitr4id 289 | . 2 β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β ((β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β§ (β¨βπ΄π΅πΆββ©β0) = π΄ β§ (β¨βπ΄π΅πΆββ©β2) = πΆ) β β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ))) |
10 | wlklnwwlknupgr 29407 | . . . 4 β’ (πΊ β UPGraph β (βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2) β β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ))) | |
11 | 10 | bicomd 222 | . . 3 β’ (πΊ β UPGraph β (β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
12 | 11 | 3ad2ant1 1131 | . 2 β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ© β (2 WWalksN πΊ) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
13 | 2, 9, 12 | 3bitrd 304 | 1 β’ ((πΊ β UPGraph β§ π΄ β π β§ πΆ β π) β (β¨βπ΄π΅πΆββ© β (π΄(2 WWalksNOn πΊ)πΆ) β βπ(π(WalksβπΊ)β¨βπ΄π΅πΆββ© β§ (β―βπ) = 2))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 βwex 1779 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 0cc0 11112 2c2 12271 β―chash 14294 β¨βcs3 14797 Vtxcvtx 28523 UPGraphcupgr 28607 Walkscwlks 29120 WWalksN cwwlksn 29347 WWalksNOn cwwlksnon 29348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-ac2 10460 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-ac 10113 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-s2 14803 df-s3 14804 df-edg 28575 df-uhgr 28585 df-upgr 28609 df-wlks 29123 df-wwlks 29351 df-wwlksn 29352 df-wwlksnon 29353 |
This theorem is referenced by: umgrwwlks2on 29478 elwwlks2on 29480 |
Copyright terms: Public domain | W3C validator |