![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimclim2 | Structured version Visualization version GIF version |
Description: Given a sequence of extended reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals (see climreeq 45569), if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals. In order for the first part of the statement to even make sense, the sequence will of course eventually become (and stay) real: showing this, is the key step of the proof. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimclim2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimclim2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimclim2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
xlimclim2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
xlimclim2 | ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐹~~>*𝐴) → 𝐹~~>*𝐴) | |
2 | xlimclim2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | xlimclim2.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹~~>*𝐴) → 𝐹:𝑍⟶ℝ*) |
5 | xlimclim2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹~~>*𝐴) → 𝐴 ∈ ℝ) |
7 | xlimclim2.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹~~>*𝐴) → 𝑀 ∈ ℤ) |
9 | 8, 2, 4, 6, 1 | xlimxrre 45787 | . . . 4 ⊢ ((𝜑 ∧ 𝐹~~>*𝐴) → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
10 | 2, 4, 6, 9 | xlimclim2lem 45795 | . . 3 ⊢ ((𝜑 ∧ 𝐹~~>*𝐴) → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
11 | 1, 10 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 𝐹~~>*𝐴) → 𝐹 ⇝ 𝐴) |
12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐹 ⇝ 𝐴) | |
13 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐹:𝑍⟶ℝ*) |
14 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐴 ∈ ℝ) |
15 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝑀 ∈ ℤ) |
16 | 15, 2, 13, 14, 12 | climxrre 45706 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
17 | 2, 13, 14, 16 | xlimclim2lem 45795 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
18 | 12, 17 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐹~~>*𝐴) |
19 | 11, 18 | impbida 801 | 1 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 ℝcr 11152 ℝ*cxr 11292 ℤcz 12611 ℤ≥cuz 12876 ⇝ cli 15517 ~~>*clsxlim 45774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fl 13829 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-rest 17469 df-topn 17470 df-topgen 17490 df-ordt 17548 df-ps 18624 df-tsr 18625 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-lm 23253 df-xms 24346 df-ms 24347 df-xlim 45775 |
This theorem is referenced by: climxlim2lem 45801 dfxlim2v 45803 xlimclimdm 45810 |
Copyright terms: Public domain | W3C validator |