| Step | Hyp | Ref
 | Expression | 
| 1 |   | dvply1.f | 
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 2 | 1 | oveq2d 5938 | 
. 2
⊢ (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) | 
| 3 |   | eqid 2196 | 
. . . . 5
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 4 | 3 | cnfldtopon 14776 | 
. . . 4
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) | 
| 5 | 4 | toponrestid 14257 | 
. . 3
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) | 
| 6 |   | cnelprrecn 8015 | 
. . . 4
⊢ ℂ
∈ {ℝ, ℂ} | 
| 7 | 6 | a1i 9 | 
. . 3
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) | 
| 8 | 3 | cnfldtop 14777 | 
. . . 4
⊢
(TopOpen‘ℂfld) ∈ Top | 
| 9 |   | unicntop 14779 | 
. . . . 5
⊢ ℂ =
∪
(TopOpen‘ℂfld) | 
| 10 | 9 | topopn 14244 | 
. . . 4
⊢
((TopOpen‘ℂfld) ∈ Top → ℂ ∈
(TopOpen‘ℂfld)) | 
| 11 | 8, 10 | mp1i 10 | 
. . 3
⊢ (𝜑 → ℂ ∈
(TopOpen‘ℂfld)) | 
| 12 |   | 0zd 9338 | 
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) | 
| 13 |   | dvply1.n | 
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 14 | 13 | nn0zd 9446 | 
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 15 | 12, 14 | fzfigd 10523 | 
. . 3
⊢ (𝜑 → (0...𝑁) ∈ Fin) | 
| 16 |   | dvply1.a | 
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 17 |   | elfznn0 10189 | 
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | 
| 18 |   | ffvelcdm 5695 | 
. . . . . . 7
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) | 
| 19 | 16, 17, 18 | syl2an 289 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) | 
| 20 | 19 | adantr 276 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝐴‘𝑘) ∈ ℂ) | 
| 21 |   | simpr 110 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | 
| 22 | 17 | ad2antlr 489 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0) | 
| 23 | 21, 22 | expcld 10765 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝑧↑𝑘) ∈ ℂ) | 
| 24 | 20, 23 | mulcld 8047 | 
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 25 | 24 | 3impa 1196 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 26 | 19 | 3adant3 1019 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → (𝐴‘𝑘) ∈ ℂ) | 
| 27 |   | 0cnd 8019 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈
ℂ) | 
| 28 |   | simpl2 1003 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ (0...𝑁)) | 
| 29 | 28, 17 | syl 14 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0) | 
| 30 | 29 | nn0cnd 9304 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ) | 
| 31 |   | simpl3 1004 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ) | 
| 32 |   | simpr 110 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0) | 
| 33 |   | elnn0 9251 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) | 
| 34 | 29, 33 | sylib 122 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) | 
| 35 | 32, 34 | ecased 1360 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ) | 
| 36 |   | nnm1nn0 9290 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈
ℕ0) | 
| 37 | 35, 36 | syl 14 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈
ℕ0) | 
| 38 | 31, 37 | expcld 10765 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ) | 
| 39 | 30, 38 | mulcld 8047 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈
ℂ) | 
| 40 | 17 | 3ad2ant2 1021 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0) | 
| 41 | 40 | nn0zd 9446 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℤ) | 
| 42 |   | 0zd 9338 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) | 
| 43 |   | zdceq 9401 | 
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑘 = 0) | 
| 44 | 41, 42, 43 | syl2anc 411 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → DECID
𝑘 = 0) | 
| 45 | 27, 39, 44 | ifcldadc 3590 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈
ℂ) | 
| 46 | 26, 45 | mulcld 8047 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈
ℂ) | 
| 47 |   | 0cnd 8019 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈
ℂ) | 
| 48 | 22 | nn0cnd 9304 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℂ) | 
| 49 | 48 | adantr 276 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ) | 
| 50 |   | simplr 528 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ) | 
| 51 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0) | 
| 52 | 22 | adantr 276 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0) | 
| 53 | 52, 33 | sylib 122 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) | 
| 54 | 51, 53 | ecased 1360 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ) | 
| 55 | 54, 36 | syl 14 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈
ℕ0) | 
| 56 | 50, 55 | expcld 10765 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ) | 
| 57 | 49, 56 | mulcld 8047 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈
ℂ) | 
| 58 | 44 | 3expa 1205 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → DECID
𝑘 = 0) | 
| 59 | 47, 57, 58 | ifcldadc 3590 | 
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈
ℂ) | 
| 60 | 17 | adantl 277 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) | 
| 61 |   | dvexp2 14948 | 
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ (ℂ D (𝑧 ∈
ℂ ↦ (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) | 
| 62 | 60, 61 | syl 14 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) | 
| 63 | 23, 59, 62, 19 | dvmptcmulcn 14957 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ ((𝐴‘𝑘) · (𝑧↑𝑘)))) = (𝑧 ∈ ℂ ↦ ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))) | 
| 64 | 5, 3, 7, 11, 15, 25, 46, 63 | dvmptfsum 14961 | 
. 2
⊢ (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))) | 
| 65 |   | elfznn 10129 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | 
| 66 | 65 | nnne0d 9035 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0) | 
| 67 | 66 | neneqd 2388 | 
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → ¬ 𝑘 = 0) | 
| 68 | 67 | adantl 277 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0) | 
| 69 | 68 | iffalsed 3571 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1)))) | 
| 70 | 69 | oveq2d 5938 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1))))) | 
| 71 | 70 | sumeq2dv 11533 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1))))) | 
| 72 |   | 1eluzge0 9648 | 
. . . . . . 7
⊢ 1 ∈
(ℤ≥‘0) | 
| 73 |   | fzss1 10138 | 
. . . . . . 7
⊢ (1 ∈
(ℤ≥‘0) → (1...𝑁) ⊆ (0...𝑁)) | 
| 74 | 72, 73 | mp1i 10 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (1...𝑁) ⊆ (0...𝑁)) | 
| 75 | 16 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) | 
| 76 | 65 | nnnn0d 9302 | 
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0) | 
| 77 | 75, 76, 18 | syl2an 289 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴‘𝑘) ∈ ℂ) | 
| 78 | 66 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0) | 
| 79 | 78 | neneqd 2388 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0) | 
| 80 | 79 | iffalsed 3571 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1)))) | 
| 81 | 76 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0) | 
| 82 | 81 | nn0cnd 9304 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) | 
| 83 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑧 ∈ ℂ) | 
| 84 | 65, 36 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈
ℕ0) | 
| 85 | 84 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈
ℕ0) | 
| 86 | 83, 85 | expcld 10765 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑧↑(𝑘 − 1)) ∈ ℂ) | 
| 87 | 82, 86 | mulcld 8047 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈
ℂ) | 
| 88 | 80, 87 | eqeltrd 2273 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈
ℂ) | 
| 89 | 77, 88 | mulcld 8047 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈
ℂ) | 
| 90 |   | eldifn 3286 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ (1...𝑁)) | 
| 91 |   | 0p1e1 9104 | 
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 | 
| 92 | 91 | oveq1i 5932 | 
. . . . . . . . . . . . 13
⊢ ((0 +
1)...𝑁) = (1...𝑁) | 
| 93 | 92 | eleq2i 2263 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0 + 1)...𝑁) ↔ 𝑘 ∈ (1...𝑁)) | 
| 94 | 90, 93 | sylnibr 678 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ ((0 + 1)...𝑁)) | 
| 95 | 94 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ¬ 𝑘 ∈ ((0 + 1)...𝑁)) | 
| 96 |   | eldifi 3285 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → 𝑘 ∈ (0...𝑁)) | 
| 97 | 96 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 ∈ (0...𝑁)) | 
| 98 |   | nn0uz 9636 | 
. . . . . . . . . . . . . 14
⊢
ℕ0 = (ℤ≥‘0) | 
| 99 | 13, 98 | eleqtrdi 2289 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) | 
| 100 | 99 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑁 ∈
(ℤ≥‘0)) | 
| 101 |   | elfzp12 10174 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))) | 
| 102 | 100, 101 | syl 14 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))) | 
| 103 | 97, 102 | mpbid 147 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))) | 
| 104 | 95, 103 | ecased 1360 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 = 0) | 
| 105 | 104 | iftrued 3568 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = 0) | 
| 106 | 105 | oveq2d 5938 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴‘𝑘) · 0)) | 
| 107 | 75, 17, 18 | syl2an 289 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) | 
| 108 | 107 | mul01d 8419 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · 0) = 0) | 
| 109 | 96, 108 | sylan2 286 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴‘𝑘) · 0) = 0) | 
| 110 | 106, 109 | eqtrd 2229 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = 0) | 
| 111 |   | elfzelz 10100 | 
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) | 
| 112 | 111 | adantl 277 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℤ) | 
| 113 |   | 1zzd 9353 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 1 ∈ ℤ) | 
| 114 | 14 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) | 
| 115 |   | fzdcel 10115 | 
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 1 ∈
ℤ ∧ 𝑁 ∈
ℤ) → DECID 𝑗 ∈ (1...𝑁)) | 
| 116 | 112, 113,
114, 115 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → DECID 𝑗 ∈ (1...𝑁)) | 
| 117 | 116 | ralrimiva 2570 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...𝑁)DECID 𝑗 ∈ (1...𝑁)) | 
| 118 |   | 0zd 9338 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) | 
| 119 | 14 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) | 
| 120 | 118, 119 | fzfigd 10523 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) | 
| 121 | 74, 89, 110, 117, 120 | fisumss 11557 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) | 
| 122 |   | elfznn0 10189 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0) | 
| 123 | 122 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0) | 
| 124 | 123 | nn0cnd 9304 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ) | 
| 125 |   | ax-1cn 7972 | 
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ | 
| 126 |   | pncan 8232 | 
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑗 + 1)
− 1) = 𝑗) | 
| 127 | 124, 125,
126 | sylancl 413 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) − 1) = 𝑗) | 
| 128 | 127 | oveq2d 5938 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑((𝑗 + 1) − 1)) = (𝑧↑𝑗)) | 
| 129 | 128 | oveq2d 5938 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑧↑𝑗))) | 
| 130 | 129 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑𝑗)))) | 
| 131 | 16 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ) | 
| 132 |   | peano2nn0 9289 | 
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ0) | 
| 133 | 122, 132 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈
ℕ0) | 
| 134 | 133 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈
ℕ0) | 
| 135 | 131, 134 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑗 + 1)) ∈ ℂ) | 
| 136 | 134 | nn0cnd 9304 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℂ) | 
| 137 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑧 ∈ ℂ) | 
| 138 | 137, 123 | expcld 10765 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑𝑗) ∈ ℂ) | 
| 139 | 135, 136,
138 | mulassd 8050 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧↑𝑗)) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑𝑗)))) | 
| 140 | 135, 136 | mulcomd 8048 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1)))) | 
| 141 | 140 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧↑𝑗)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗))) | 
| 142 | 130, 139,
141 | 3eqtr2d 2235 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗))) | 
| 143 | 142 | sumeq2dv 11533 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗))) | 
| 144 |   | 1m1e0 9059 | 
. . . . . . . . 9
⊢ (1
− 1) = 0 | 
| 145 | 144 | oveq1i 5932 | 
. . . . . . . 8
⊢ ((1
− 1)...(𝑁 − 1))
= (0...(𝑁 −
1)) | 
| 146 | 145 | sumeq1i 11528 | 
. . . . . . 7
⊢
Σ𝑗 ∈ ((1
− 1)...(𝑁 −
1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) | 
| 147 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝑘 + 1) = (𝑗 + 1)) | 
| 148 |   | fvoveq1 5945 | 
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐴‘(𝑘 + 1)) = (𝐴‘(𝑗 + 1))) | 
| 149 | 147, 148 | oveq12d 5940 | 
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1)))) | 
| 150 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑧↑𝑘) = (𝑧↑𝑗)) | 
| 151 | 149, 150 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗))) | 
| 152 | 151 | cbvsumv 11526 | 
. . . . . . 7
⊢
Σ𝑘 ∈
(0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗)) | 
| 153 | 143, 146,
152 | 3eqtr4g 2254 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘))) | 
| 154 |   | 1zzd 9353 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 1 ∈
ℤ) | 
| 155 | 13 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈
ℕ0) | 
| 156 | 155 | nn0zd 9446 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) | 
| 157 | 77, 87 | mulcld 8047 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) ∈
ℂ) | 
| 158 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑘 = (𝑗 + 1) → (𝐴‘𝑘) = (𝐴‘(𝑗 + 1))) | 
| 159 |   | id 19 | 
. . . . . . . . 9
⊢ (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1)) | 
| 160 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑘 = (𝑗 + 1) → (𝑘 − 1) = ((𝑗 + 1) − 1)) | 
| 161 | 160 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑘 = (𝑗 + 1) → (𝑧↑(𝑘 − 1)) = (𝑧↑((𝑗 + 1) − 1))) | 
| 162 | 159, 161 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑘 = (𝑗 + 1) → (𝑘 · (𝑧↑(𝑘 − 1))) = ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) | 
| 163 | 158, 162 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑘 = (𝑗 + 1) → ((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))) | 
| 164 | 154, 154,
156, 157, 163 | fsumshftm 11610 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))) | 
| 165 |   | elfznn0 10189 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) | 
| 166 | 165 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0) | 
| 167 |   | peano2nn0 9289 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) | 
| 168 | 166, 167 | syl 14 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 + 1) ∈
ℕ0) | 
| 169 | 168 | nn0cnd 9304 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 + 1) ∈ ℂ) | 
| 170 | 16 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ) | 
| 171 | 170, 168 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑘 + 1)) ∈ ℂ) | 
| 172 | 169, 171 | mulcld 8047 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ) | 
| 173 |   | dvply1.b | 
. . . . . . . . . 10
⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) | 
| 174 | 173 | fvmpt2 5645 | 
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ ((𝑘 + 1) ·
(𝐴‘(𝑘 + 1))) ∈ ℂ) →
(𝐵‘𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) | 
| 175 | 166, 172,
174 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐵‘𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) | 
| 176 | 175 | oveq1d 5937 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘))) | 
| 177 | 176 | sumeq2dv 11533 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘))) | 
| 178 | 153, 164,
177 | 3eqtr4d 2239 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘))) | 
| 179 | 71, 121, 178 | 3eqtr3d 2237 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘))) | 
| 180 | 179 | mpteq2dva 4123 | 
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) | 
| 181 |   | dvply1.g | 
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) | 
| 182 | 180, 181 | eqtr4d 2232 | 
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = 𝐺) | 
| 183 | 2, 64, 182 | 3eqtrd 2233 | 
1
⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) |