Step | Hyp | Ref
| Expression |
1 | | dvply1.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
2 | 1 | oveq2d 5935 |
. 2
⊢ (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))))) |
3 | | eqid 2193 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
4 | 3 | cnfldtopon 14719 |
. . . 4
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
5 | 4 | toponrestid 14200 |
. . 3
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
6 | | cnelprrecn 8010 |
. . . 4
⊢ ℂ
∈ {ℝ, ℂ} |
7 | 6 | a1i 9 |
. . 3
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) |
8 | 3 | cnfldtop 14720 |
. . . 4
⊢
(TopOpen‘ℂfld) ∈ Top |
9 | | unicntop 14722 |
. . . . 5
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
10 | 9 | topopn 14187 |
. . . 4
⊢
((TopOpen‘ℂfld) ∈ Top → ℂ ∈
(TopOpen‘ℂfld)) |
11 | 8, 10 | mp1i 10 |
. . 3
⊢ (𝜑 → ℂ ∈
(TopOpen‘ℂfld)) |
12 | | 0zd 9332 |
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) |
13 | | dvply1.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
14 | 13 | nn0zd 9440 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
15 | 12, 14 | fzfigd 10505 |
. . 3
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
16 | | dvply1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
17 | | elfznn0 10183 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
18 | | ffvelcdm 5692 |
. . . . . . 7
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
19 | 16, 17, 18 | syl2an 289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
20 | 19 | adantr 276 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝐴‘𝑘) ∈ ℂ) |
21 | | simpr 110 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) |
22 | 17 | ad2antlr 489 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0) |
23 | 21, 22 | expcld 10747 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝑧↑𝑘) ∈ ℂ) |
24 | 20, 23 | mulcld 8042 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
25 | 24 | 3impa 1196 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
26 | 19 | 3adant3 1019 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → (𝐴‘𝑘) ∈ ℂ) |
27 | | 0cnd 8014 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈
ℂ) |
28 | | simpl2 1003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ (0...𝑁)) |
29 | 28, 17 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0) |
30 | 29 | nn0cnd 9298 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ) |
31 | | simpl3 1004 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ) |
32 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0) |
33 | | elnn0 9245 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
34 | 29, 33 | sylib 122 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) |
35 | 32, 34 | ecased 1360 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ) |
36 | | nnm1nn0 9284 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈
ℕ0) |
37 | 35, 36 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈
ℕ0) |
38 | 31, 37 | expcld 10747 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ) |
39 | 30, 38 | mulcld 8042 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈
ℂ) |
40 | 17 | 3ad2ant2 1021 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0) |
41 | 40 | nn0zd 9440 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℤ) |
42 | | 0zd 9332 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) |
43 | | zdceq 9395 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑘 = 0) |
44 | 41, 42, 43 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → DECID
𝑘 = 0) |
45 | 27, 39, 44 | ifcldadc 3587 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈
ℂ) |
46 | 26, 45 | mulcld 8042 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈
ℂ) |
47 | | 0cnd 8014 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈
ℂ) |
48 | 22 | nn0cnd 9298 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℂ) |
49 | 48 | adantr 276 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ) |
50 | | simplr 528 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ) |
51 | | simpr 110 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0) |
52 | 22 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0) |
53 | 52, 33 | sylib 122 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) |
54 | 51, 53 | ecased 1360 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ) |
55 | 54, 36 | syl 14 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈
ℕ0) |
56 | 50, 55 | expcld 10747 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ) |
57 | 49, 56 | mulcld 8042 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈
ℂ) |
58 | 44 | 3expa 1205 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → DECID
𝑘 = 0) |
59 | 47, 57, 58 | ifcldadc 3587 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈
ℂ) |
60 | 17 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
61 | | dvexp2 14891 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ (ℂ D (𝑧 ∈
ℂ ↦ (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) |
62 | 60, 61 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) |
63 | 23, 59, 62, 19 | dvmptcmulcn 14900 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ ((𝐴‘𝑘) · (𝑧↑𝑘)))) = (𝑧 ∈ ℂ ↦ ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))) |
64 | 5, 3, 7, 11, 15, 25, 46, 63 | dvmptfsum 14904 |
. 2
⊢ (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))) |
65 | | elfznn 10123 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
66 | 65 | nnne0d 9029 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0) |
67 | 66 | neneqd 2385 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → ¬ 𝑘 = 0) |
68 | 67 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0) |
69 | 68 | iffalsed 3568 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1)))) |
70 | 69 | oveq2d 5935 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1))))) |
71 | 70 | sumeq2dv 11514 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1))))) |
72 | | 1eluzge0 9642 |
. . . . . . 7
⊢ 1 ∈
(ℤ≥‘0) |
73 | | fzss1 10132 |
. . . . . . 7
⊢ (1 ∈
(ℤ≥‘0) → (1...𝑁) ⊆ (0...𝑁)) |
74 | 72, 73 | mp1i 10 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (1...𝑁) ⊆ (0...𝑁)) |
75 | 16 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
76 | 65 | nnnn0d 9296 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0) |
77 | 75, 76, 18 | syl2an 289 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
78 | 66 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0) |
79 | 78 | neneqd 2385 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0) |
80 | 79 | iffalsed 3568 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1)))) |
81 | 76 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0) |
82 | 81 | nn0cnd 9298 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) |
83 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑧 ∈ ℂ) |
84 | 65, 36 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈
ℕ0) |
85 | 84 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈
ℕ0) |
86 | 83, 85 | expcld 10747 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑧↑(𝑘 − 1)) ∈ ℂ) |
87 | 82, 86 | mulcld 8042 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈
ℂ) |
88 | 80, 87 | eqeltrd 2270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈
ℂ) |
89 | 77, 88 | mulcld 8042 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈
ℂ) |
90 | | eldifn 3283 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ (1...𝑁)) |
91 | | 0p1e1 9098 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
92 | 91 | oveq1i 5929 |
. . . . . . . . . . . . 13
⊢ ((0 +
1)...𝑁) = (1...𝑁) |
93 | 92 | eleq2i 2260 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0 + 1)...𝑁) ↔ 𝑘 ∈ (1...𝑁)) |
94 | 90, 93 | sylnibr 678 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ ((0 + 1)...𝑁)) |
95 | 94 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ¬ 𝑘 ∈ ((0 + 1)...𝑁)) |
96 | | eldifi 3282 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → 𝑘 ∈ (0...𝑁)) |
97 | 96 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 ∈ (0...𝑁)) |
98 | | nn0uz 9630 |
. . . . . . . . . . . . . 14
⊢
ℕ0 = (ℤ≥‘0) |
99 | 13, 98 | eleqtrdi 2286 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
100 | 99 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑁 ∈
(ℤ≥‘0)) |
101 | | elfzp12 10168 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))) |
102 | 100, 101 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))) |
103 | 97, 102 | mpbid 147 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))) |
104 | 95, 103 | ecased 1360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 = 0) |
105 | 104 | iftrued 3565 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = 0) |
106 | 105 | oveq2d 5935 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴‘𝑘) · 0)) |
107 | 75, 17, 18 | syl2an 289 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
108 | 107 | mul01d 8414 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · 0) = 0) |
109 | 96, 108 | sylan2 286 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴‘𝑘) · 0) = 0) |
110 | 106, 109 | eqtrd 2226 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = 0) |
111 | | elfzelz 10094 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) |
112 | 111 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℤ) |
113 | | 1zzd 9347 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 1 ∈ ℤ) |
114 | 14 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) |
115 | | fzdcel 10109 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 1 ∈
ℤ ∧ 𝑁 ∈
ℤ) → DECID 𝑗 ∈ (1...𝑁)) |
116 | 112, 113,
114, 115 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → DECID 𝑗 ∈ (1...𝑁)) |
117 | 116 | ralrimiva 2567 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...𝑁)DECID 𝑗 ∈ (1...𝑁)) |
118 | | 0zd 9332 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) |
119 | 14 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) |
120 | 118, 119 | fzfigd 10505 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
121 | 74, 89, 110, 117, 120 | fisumss 11538 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) |
122 | | elfznn0 10183 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0) |
123 | 122 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0) |
124 | 123 | nn0cnd 9298 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ) |
125 | | ax-1cn 7967 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
126 | | pncan 8227 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑗 + 1)
− 1) = 𝑗) |
127 | 124, 125,
126 | sylancl 413 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) − 1) = 𝑗) |
128 | 127 | oveq2d 5935 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑((𝑗 + 1) − 1)) = (𝑧↑𝑗)) |
129 | 128 | oveq2d 5935 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑧↑𝑗))) |
130 | 129 | oveq2d 5935 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑𝑗)))) |
131 | 16 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ) |
132 | | peano2nn0 9283 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ0) |
133 | 122, 132 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈
ℕ0) |
134 | 133 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈
ℕ0) |
135 | 131, 134 | ffvelcdmd 5695 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑗 + 1)) ∈ ℂ) |
136 | 134 | nn0cnd 9298 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℂ) |
137 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑧 ∈ ℂ) |
138 | 137, 123 | expcld 10747 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑𝑗) ∈ ℂ) |
139 | 135, 136,
138 | mulassd 8045 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧↑𝑗)) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑𝑗)))) |
140 | 135, 136 | mulcomd 8043 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1)))) |
141 | 140 | oveq1d 5934 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧↑𝑗)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗))) |
142 | 130, 139,
141 | 3eqtr2d 2232 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗))) |
143 | 142 | sumeq2dv 11514 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗))) |
144 | | 1m1e0 9053 |
. . . . . . . . 9
⊢ (1
− 1) = 0 |
145 | 144 | oveq1i 5929 |
. . . . . . . 8
⊢ ((1
− 1)...(𝑁 − 1))
= (0...(𝑁 −
1)) |
146 | 145 | sumeq1i 11509 |
. . . . . . 7
⊢
Σ𝑗 ∈ ((1
− 1)...(𝑁 −
1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) |
147 | | oveq1 5926 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝑘 + 1) = (𝑗 + 1)) |
148 | | fvoveq1 5942 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐴‘(𝑘 + 1)) = (𝐴‘(𝑗 + 1))) |
149 | 147, 148 | oveq12d 5937 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1)))) |
150 | | oveq2 5927 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑧↑𝑘) = (𝑧↑𝑗)) |
151 | 149, 150 | oveq12d 5937 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗))) |
152 | 151 | cbvsumv 11507 |
. . . . . . 7
⊢
Σ𝑘 ∈
(0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧↑𝑗)) |
153 | 143, 146,
152 | 3eqtr4g 2251 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘))) |
154 | | 1zzd 9347 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 1 ∈
ℤ) |
155 | 13 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈
ℕ0) |
156 | 155 | nn0zd 9440 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) |
157 | 77, 87 | mulcld 8042 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) ∈
ℂ) |
158 | | fveq2 5555 |
. . . . . . . 8
⊢ (𝑘 = (𝑗 + 1) → (𝐴‘𝑘) = (𝐴‘(𝑗 + 1))) |
159 | | id 19 |
. . . . . . . . 9
⊢ (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1)) |
160 | | oveq1 5926 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑗 + 1) → (𝑘 − 1) = ((𝑗 + 1) − 1)) |
161 | 160 | oveq2d 5935 |
. . . . . . . . 9
⊢ (𝑘 = (𝑗 + 1) → (𝑧↑(𝑘 − 1)) = (𝑧↑((𝑗 + 1) − 1))) |
162 | 159, 161 | oveq12d 5937 |
. . . . . . . 8
⊢ (𝑘 = (𝑗 + 1) → (𝑘 · (𝑧↑(𝑘 − 1))) = ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) |
163 | 158, 162 | oveq12d 5937 |
. . . . . . 7
⊢ (𝑘 = (𝑗 + 1) → ((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))) |
164 | 154, 154,
156, 157, 163 | fsumshftm 11591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))) |
165 | | elfznn0 10183 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
166 | 165 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0) |
167 | | peano2nn0 9283 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
168 | 166, 167 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 + 1) ∈
ℕ0) |
169 | 168 | nn0cnd 9298 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 + 1) ∈ ℂ) |
170 | 16 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ) |
171 | 170, 168 | ffvelcdmd 5695 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑘 + 1)) ∈ ℂ) |
172 | 169, 171 | mulcld 8042 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ) |
173 | | dvply1.b |
. . . . . . . . . 10
⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) |
174 | 173 | fvmpt2 5642 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ ((𝑘 + 1) ·
(𝐴‘(𝑘 + 1))) ∈ ℂ) →
(𝐵‘𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) |
175 | 166, 172,
174 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐵‘𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) |
176 | 175 | oveq1d 5934 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘))) |
177 | 176 | sumeq2dv 11514 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧↑𝑘))) |
178 | 153, 164,
177 | 3eqtr4d 2236 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴‘𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘))) |
179 | 71, 121, 178 | 3eqtr3d 2234 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘))) |
180 | 179 | mpteq2dva 4120 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
181 | | dvply1.g |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
182 | 180, 181 | eqtr4d 2229 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = 𝐺) |
183 | 2, 64, 182 | 3eqtrd 2230 |
1
⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) |