ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply1 GIF version

Theorem dvply1 14943
Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvply1.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
dvply1.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
dvply1.a (𝜑𝐴:ℕ0⟶ℂ)
dvply1.b 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
dvply1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
dvply1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Distinct variable groups:   𝜑,𝑧,𝑘   𝑧,𝐴,𝑘   𝑧,𝐵   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑧,𝑘)   𝐺(𝑧,𝑘)

Proof of Theorem dvply1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 dvply1.f . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
21oveq2d 5935 . 2 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
3 eqid 2193 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
43cnfldtopon 14719 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
54toponrestid 14200 . . 3 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
6 cnelprrecn 8010 . . . 4 ℂ ∈ {ℝ, ℂ}
76a1i 9 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
83cnfldtop 14720 . . . 4 (TopOpen‘ℂfld) ∈ Top
9 unicntop 14722 . . . . 5 ℂ = (TopOpen‘ℂfld)
109topopn 14187 . . . 4 ((TopOpen‘ℂfld) ∈ Top → ℂ ∈ (TopOpen‘ℂfld))
118, 10mp1i 10 . . 3 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
12 0zd 9332 . . . 4 (𝜑 → 0 ∈ ℤ)
13 dvply1.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
1413nn0zd 9440 . . . 4 (𝜑𝑁 ∈ ℤ)
1512, 14fzfigd 10505 . . 3 (𝜑 → (0...𝑁) ∈ Fin)
16 dvply1.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
17 elfznn0 10183 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
18 ffvelcdm 5692 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1916, 17, 18syl2an 289 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
2019adantr 276 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
21 simpr 110 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
2217ad2antlr 489 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
2321, 22expcld 10747 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
2420, 23mulcld 8042 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
25243impa 1196 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
26193adant3 1019 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
27 0cnd 8014 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
28 simpl2 1003 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ (0...𝑁))
2928, 17syl 14 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
3029nn0cnd 9298 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
31 simpl3 1004 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ)
32 simpr 110 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
33 elnn0 9245 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3429, 33sylib 122 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3532, 34ecased 1360 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
36 nnm1nn0 9284 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
3735, 36syl 14 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
3831, 37expcld 10747 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
3930, 38mulcld 8042 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
40173ad2ant2 1021 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
4140nn0zd 9440 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℤ)
42 0zd 9332 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → 0 ∈ ℤ)
43 zdceq 9395 . . . . . 6 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑘 = 0)
4441, 42, 43syl2anc 411 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → DECID 𝑘 = 0)
4527, 39, 44ifcldadc 3587 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
4626, 45mulcld 8042 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
47 0cnd 8014 . . . . 5 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
4822nn0cnd 9298 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℂ)
4948adantr 276 . . . . . 6 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
50 simplr 528 . . . . . . 7 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ)
51 simpr 110 . . . . . . . . 9 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
5222adantr 276 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
5352, 33sylib 122 . . . . . . . . 9 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
5451, 53ecased 1360 . . . . . . . 8 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
5554, 36syl 14 . . . . . . 7 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
5650, 55expcld 10747 . . . . . 6 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
5749, 56mulcld 8042 . . . . 5 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
58443expa 1205 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → DECID 𝑘 = 0)
5947, 57, 58ifcldadc 3587 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
6017adantl 277 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
61 dvexp2 14891 . . . . 5 (𝑘 ∈ ℕ0 → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
6260, 61syl 14 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
6323, 59, 62, 19dvmptcmulcn 14900 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
645, 3, 7, 11, 15, 25, 46, 63dvmptfsum 14904 . 2 (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
65 elfznn 10123 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
6665nnne0d 9029 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
6766neneqd 2385 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ¬ 𝑘 = 0)
6867adantl 277 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
6968iffalsed 3568 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
7069oveq2d 5935 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
7170sumeq2dv 11514 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
72 1eluzge0 9642 . . . . . . 7 1 ∈ (ℤ‘0)
73 fzss1 10132 . . . . . . 7 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
7472, 73mp1i 10 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (1...𝑁) ⊆ (0...𝑁))
7516adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
7665nnnn0d 9296 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
7775, 76, 18syl2an 289 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
7866adantl 277 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
7978neneqd 2385 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
8079iffalsed 3568 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
8176adantl 277 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
8281nn0cnd 9298 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
83 simplr 528 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
8465, 36syl 14 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0)
8584adantl 277 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℕ0)
8683, 85expcld 10747 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
8782, 86mulcld 8042 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
8880, 87eqeltrd 2270 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
8977, 88mulcld 8042 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
90 eldifn 3283 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ (1...𝑁))
91 0p1e1 9098 . . . . . . . . . . . . . 14 (0 + 1) = 1
9291oveq1i 5929 . . . . . . . . . . . . 13 ((0 + 1)...𝑁) = (1...𝑁)
9392eleq2i 2260 . . . . . . . . . . . 12 (𝑘 ∈ ((0 + 1)...𝑁) ↔ 𝑘 ∈ (1...𝑁))
9490, 93sylnibr 678 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
9594adantl 277 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
96 eldifi 3282 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → 𝑘 ∈ (0...𝑁))
9796adantl 277 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 ∈ (0...𝑁))
98 nn0uz 9630 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
9913, 98eleqtrdi 2286 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘0))
10099ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑁 ∈ (ℤ‘0))
101 elfzp12 10168 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
102100, 101syl 14 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
10397, 102mpbid 147 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))
10495, 103ecased 1360 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 = 0)
105104iftrued 3565 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = 0)
106105oveq2d 5935 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · 0))
10775, 17, 18syl2an 289 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
108107mul01d 8414 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · 0) = 0)
10996, 108sylan2 286 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · 0) = 0)
110106, 109eqtrd 2226 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = 0)
111 elfzelz 10094 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
112111adantl 277 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℤ)
113 1zzd 9347 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 1 ∈ ℤ)
11414ad2antrr 488 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
115 fzdcel 10109 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑗 ∈ (1...𝑁))
116112, 113, 114, 115syl3anc 1249 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → DECID 𝑗 ∈ (1...𝑁))
117116ralrimiva 2567 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...𝑁)DECID 𝑗 ∈ (1...𝑁))
118 0zd 9332 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 0 ∈ ℤ)
11914adantr 276 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
120118, 119fzfigd 10505 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
12174, 89, 110, 117, 120fisumss 11538 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
122 elfznn0 10183 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
123122adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
124123nn0cnd 9298 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
125 ax-1cn 7967 . . . . . . . . . . . . 13 1 ∈ ℂ
126 pncan 8227 . . . . . . . . . . . . 13 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
127124, 125, 126sylancl 413 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) − 1) = 𝑗)
128127oveq2d 5935 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑((𝑗 + 1) − 1)) = (𝑧𝑗))
129128oveq2d 5935 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑧𝑗)))
130129oveq2d 5935 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
13116ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ)
132 peano2nn0 9283 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
133122, 132syl 14 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ0)
134133adantl 277 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
135131, 134ffvelcdmd 5695 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑗 + 1)) ∈ ℂ)
136134nn0cnd 9298 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℂ)
137 simplr 528 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑧 ∈ ℂ)
138137, 123expcld 10747 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧𝑗) ∈ ℂ)
139135, 136, 138mulassd 8045 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
140135, 136mulcomd 8043 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
141140oveq1d 5934 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
142130, 139, 1413eqtr2d 2232 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
143142sumeq2dv 11514 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
144 1m1e0 9053 . . . . . . . . 9 (1 − 1) = 0
145144oveq1i 5929 . . . . . . . 8 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
146145sumeq1i 11509 . . . . . . 7 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
147 oveq1 5926 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 + 1) = (𝑗 + 1))
148 fvoveq1 5942 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴‘(𝑘 + 1)) = (𝐴‘(𝑗 + 1)))
149147, 148oveq12d 5937 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
150 oveq2 5927 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑧𝑘) = (𝑧𝑗))
151149, 150oveq12d 5937 . . . . . . . 8 (𝑘 = 𝑗 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
152151cbvsumv 11507 . . . . . . 7 Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗))
153143, 146, 1523eqtr4g 2251 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
154 1zzd 9347 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 1 ∈ ℤ)
15513adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
156155nn0zd 9440 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
15777, 87mulcld 8042 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
158 fveq2 5555 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝐴𝑘) = (𝐴‘(𝑗 + 1)))
159 id 19 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
160 oveq1 5926 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (𝑘 − 1) = ((𝑗 + 1) − 1))
161160oveq2d 5935 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑧↑(𝑘 − 1)) = (𝑧↑((𝑗 + 1) − 1)))
162159, 161oveq12d 5937 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝑘 · (𝑧↑(𝑘 − 1))) = ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
163158, 162oveq12d 5937 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
164154, 154, 156, 157, 163fsumshftm 11591 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
165 elfznn0 10183 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
166165adantl 277 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
167 peano2nn0 9283 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
168166, 167syl 14 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 + 1) ∈ ℕ0)
169168nn0cnd 9298 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 + 1) ∈ ℂ)
17016ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ)
171170, 168ffvelcdmd 5695 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
172169, 171mulcld 8042 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ)
173 dvply1.b . . . . . . . . . 10 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
174173fvmpt2 5642 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
175166, 172, 174syl2anc 411 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
176175oveq1d 5934 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐵𝑘) · (𝑧𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
177176sumeq2dv 11514 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
178153, 164, 1773eqtr4d 2236 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
17971, 121, 1783eqtr3d 2234 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
180179mpteq2dva 4120 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
181 dvply1.g . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
182180, 181eqtr4d 2229 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = 𝐺)
1832, 64, 1823eqtrd 2230 1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wne 2364  cdif 3151  wss 3154  ifcif 3558  {cpr 3620  cmpt 4091  wf 5251  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879  cmin 8192  cn 8984  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077  cexp 10612  Σcsu 11499  TopOpenctopn 12854  fldccnfld 14055  Topctop 14176   D cdv 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-pm 6707  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-rest 12855  df-topn 12856  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-top 14177  df-topon 14190  df-topsp 14210  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-xms 14518  df-ms 14519  df-cncf 14750  df-limced 14835  df-dvap 14836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator