ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyadd GIF version

Theorem plyadd 14930
Description: The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plyadd (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑆,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦

Proof of Theorem plyadd
Dummy variables 𝑘 𝑚 𝑛 𝑧 𝑎 𝑏 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply2 14914 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))))
32simprbi 275 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
41, 3syl 14 . 2 (𝜑 → ∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))))
5 plyadd.2 . . 3 (𝜑𝐺 ∈ (Poly‘𝑆))
6 elply2 14914 . . . 4 (𝐺 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
76simprbi 275 . . 3 (𝐺 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
85, 7syl 14 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))
9 reeanv 2664 . . 3 (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
10 reeanv 2664 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) ↔ (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))))
11 simp1l 1023 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝜑)
1211, 1syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 ∈ (Poly‘𝑆))
1311, 5syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 ∈ (Poly‘𝑆))
14 plyadd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1511, 14sylan 283 . . . . . . . 8 ((((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
16 simp1rl 1064 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑚 ∈ ℕ0)
17 simp1rr 1065 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑛 ∈ ℕ0)
18 simp2l 1025 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
19 simp2r 1026 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
20 simp3ll 1070 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑎 “ (ℤ‘(𝑚 + 1))) = {0})
21 simp3rl 1072 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝑏 “ (ℤ‘(𝑛 + 1))) = {0})
22 simp3lr 1071 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))))
23 oveq1 5926 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (𝑧𝑘) = (𝑤𝑘))
2423oveq2d 5935 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
2524sumeq2sdv 11516 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)))
26 fveq2 5555 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
27 oveq2 5927 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
2826, 27oveq12d 5937 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
2928cbvsumv 11507 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))
3025, 29eqtrdi 2242 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3130cbvmptv 4126 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗)))
3222, 31eqtrdi 2242 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑚)((𝑎𝑗) · (𝑤𝑗))))
33 simp3rr 1073 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))
3423oveq2d 5935 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝑏𝑘) · (𝑧𝑘)) = ((𝑏𝑘) · (𝑤𝑘)))
3534sumeq2sdv 11516 . . . . . . . . . . 11 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)))
36 fveq2 5555 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑏𝑘) = (𝑏𝑗))
3736, 27oveq12d 5937 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑏𝑘) · (𝑤𝑘)) = ((𝑏𝑗) · (𝑤𝑗)))
3837cbvsumv 11507 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))
3935, 38eqtrdi 2242 . . . . . . . . . 10 (𝑧 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4039cbvmptv 4126 . . . . . . . . 9 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗)))
4133, 40eqtrdi 2242 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → 𝐺 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑏𝑗) · (𝑤𝑗))))
4212, 13, 15, 16, 17, 18, 19, 20, 21, 32, 41plyaddlem 14928 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ (((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘)))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
43423expia 1207 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ 𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → ((((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
4443rexlimdvva 2619 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)(((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
4510, 44biimtrrid 153 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
4645rexlimdvva 2619 . . 3 (𝜑 → (∃𝑚 ∈ ℕ0𝑛 ∈ ℕ0 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
479, 46biimtrrid 153 . 2 (𝜑 → ((∃𝑚 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑚 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑚)((𝑎𝑘) · (𝑧𝑘)))) ∧ ∃𝑛 ∈ ℕ0𝑏 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑏 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑏𝑘) · (𝑧𝑘))))) → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆)))
484, 8, 47mp2and 433 1 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wrex 2473  cun 3152  wss 3154  {csn 3619  cmpt 4091  cima 4663  cfv 5255  (class class class)co 5919  𝑓 cof 6130  𝑚 cmap 6704  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879  0cn0 9243  cuz 9595  ...cfz 10077  cexp 10612  Σcsu 11499  Polycply 14907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ply 14909
This theorem is referenced by:  plysub  14932  plyaddcl  14933  plycolemc  14936
  Copyright terms: Public domain W3C validator