![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqr | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6eqr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
syl6eqr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
syl6eqr | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqr.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | syl6eqr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2104 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | syl6eq 2148 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-4 1455 ax-17 1474 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 |
This theorem is referenced by: 3eqtr4g 2157 rabxmdc 3341 relop 4627 csbcnvg 4661 dfiun3g 4732 dfiin3g 4733 resima2 4789 relcnvfld 5008 uniabio 5034 fntpg 5115 dffn5im 5399 dfimafn2 5403 fncnvima2 5473 fmptcof 5519 fcoconst 5523 fnasrng 5532 ffnov 5807 fnovim 5811 fnrnov 5848 foov 5849 funimassov 5852 ovelimab 5853 ofc12 5933 caofinvl 5935 dftpos3 6089 tfr0dm 6149 rdgisucinc 6212 oasuc 6290 ecinxp 6434 phplem1 6675 exmidpw 6731 unfiin 6743 fidcenumlemr 6771 0ct 6907 ctmlemr 6908 indpi 7051 nqnq0pi 7147 nq0m0r 7165 addnqpr1 7271 recexgt0sr 7469 recidpipr 7543 recidpirq 7545 axrnegex 7564 nntopi 7579 cnref1o 9290 fztp 9699 fseq1m1p1 9716 frecuzrdgrrn 10022 frecuzrdgsuc 10028 frecuzrdgsuctlem 10037 seq3val 10072 seqvalcd 10073 fser0const 10130 mulexpzap 10174 expaddzap 10178 bcp1m1 10352 cjexp 10506 rexuz3 10602 bdtri 10850 climconst 10898 sumfct 10982 zsumdc 10992 fsum3 10995 sum0 10996 fsumcnv 11045 mertenslem2 11144 ef0lem 11164 efzval 11187 efival 11237 sinbnd 11257 cosbnd 11258 eucalgval 11528 eucalginv 11530 eucalglt 11531 eucalgcvga 11532 eucalg 11533 sqpweven 11645 2sqpwodd 11646 dfphi2 11688 phimullem 11693 ennnfonelemhdmp1 11714 ennnfonelemkh 11717 ressid2 11800 ressval2 11801 topnvalg 11914 istps 11981 cldval 12050 ntrfval 12051 clsfval 12052 neifval 12091 restbasg 12119 tgrest 12120 txval 12205 upxp 12222 uptx 12224 txrest 12226 lmcn2 12230 cnmpt2t 12243 cnmpt2res 12247 imasnopn 12249 psmetxrge0 12260 xmetge0 12293 isxms 12379 isms 12381 bdxmet 12429 qtopbasss 12443 cnblcld 12457 negfcncf 12501 dvfvalap 12523 eldvap 12524 dvidlemap 12533 nninfsellemqall 12795 |
Copyright terms: Public domain | W3C validator |