Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cshid Structured version   Visualization version   GIF version

Theorem 1cshid 31516
Description: Cyclically shifting a single letter word keeps it unchanged. (Contributed by Thierry Arnoux, 21-Nov-2023.)
Assertion
Ref Expression
1cshid ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = 𝑊)

Proof of Theorem 1cshid
StepHypRef Expression
1 cshwmodn 14607 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
213adant3 1132 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
3 simp3 1138 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (♯‘𝑊) = 1)
43oveq2d 7358 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑁 mod (♯‘𝑊)) = (𝑁 mod 1))
5 zmod10 13713 . . . . 5 (𝑁 ∈ ℤ → (𝑁 mod 1) = 0)
653ad2ant2 1134 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑁 mod 1) = 0)
74, 6eqtrd 2777 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑁 mod (♯‘𝑊)) = 0)
87oveq2d 7358 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (𝑊 cyclShift 0))
9 cshw0 14606 . . 3 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
1093ad2ant1 1133 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 0) = 𝑊)
112, 8, 103eqtrd 2781 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  cfv 6484  (class class class)co 7342  0cc0 10977  1c1 10978  cz 12425   mod cmo 13695  chash 14150  Word cword 14322   cyclShift ccsh 14600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-inf 9305  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-fz 13346  df-fzo 13489  df-fl 13618  df-mod 13696  df-hash 14151  df-word 14323  df-concat 14379  df-substr 14453  df-pfx 14483  df-csh 14601
This theorem is referenced by:  tocyc01  31670
  Copyright terms: Public domain W3C validator