Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cshid Structured version   Visualization version   GIF version

Theorem 1cshid 32825
Description: Cyclically shifting a single letter word keeps it unchanged. (Contributed by Thierry Arnoux, 21-Nov-2023.)
Assertion
Ref Expression
1cshid ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = 𝑊)

Proof of Theorem 1cshid
StepHypRef Expression
1 cshwmodn 14805 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
213adant3 1129 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
3 simp3 1135 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (♯‘𝑊) = 1)
43oveq2d 7442 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑁 mod (♯‘𝑊)) = (𝑁 mod 1))
5 zmod10 13909 . . . . 5 (𝑁 ∈ ℤ → (𝑁 mod 1) = 0)
653ad2ant2 1131 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑁 mod 1) = 0)
74, 6eqtrd 2766 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑁 mod (♯‘𝑊)) = 0)
87oveq2d 7442 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (𝑊 cyclShift 0))
9 cshw0 14804 . . 3 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
1093ad2ant1 1130 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 0) = 𝑊)
112, 8, 103eqtrd 2770 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  cfv 6556  (class class class)co 7426  0cc0 11160  1c1 11161  cz 12612   mod cmo 13891  chash 14349  Word cword 14524   cyclShift ccsh 14798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-sup 9487  df-inf 9488  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-n0 12527  df-z 12613  df-uz 12877  df-rp 13031  df-fz 13541  df-fzo 13684  df-fl 13814  df-mod 13892  df-hash 14350  df-word 14525  df-concat 14581  df-substr 14651  df-pfx 14681  df-csh 14799
This theorem is referenced by:  tocyc01  32998
  Copyright terms: Public domain W3C validator