| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndfpropd | Structured version Visualization version GIF version | ||
| Description: If two categories have the same set of objects, morphisms, and compositions, then they have same second projection functors. (Contributed by Zhi Wang, 20-Nov-2025.) |
| Ref | Expression |
|---|---|
| 1stfpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
| 1stfpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
| 1stfpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| 1stfpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| 1stfpropd.a | ⊢ (𝜑 → 𝐴 ∈ Cat) |
| 1stfpropd.b | ⊢ (𝜑 → 𝐵 ∈ Cat) |
| 1stfpropd.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfpropd.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| 2ndfpropd | ⊢ (𝜑 → (𝐴 2ndF 𝐶) = (𝐵 2ndF 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfpropd.1 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
| 2 | 1stfpropd.2 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
| 3 | 1stfpropd.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 4 | 1stfpropd.4 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 5 | 1stfpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Cat) | |
| 6 | 1stfpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ Cat) | |
| 7 | 1stfpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | 1stfpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpcpropd 18114 | . . . . 5 ⊢ (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷)) |
| 10 | 9 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (Base‘(𝐴 ×c 𝐶)) = (Base‘(𝐵 ×c 𝐷))) |
| 11 | 10 | reseq2d 5930 | . . 3 ⊢ (𝜑 → (2nd ↾ (Base‘(𝐴 ×c 𝐶))) = (2nd ↾ (Base‘(𝐵 ×c 𝐷)))) |
| 12 | 9 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐵 ×c 𝐷))) |
| 13 | 12 | oveqd 7366 | . . . . 5 ⊢ (𝜑 → (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦) = (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)) |
| 14 | 13 | reseq2d 5930 | . . . 4 ⊢ (𝜑 → (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)) = (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦))) |
| 15 | 10, 10, 14 | mpoeq123dv 7424 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦))) = (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))) |
| 16 | 11, 15 | opeq12d 4832 | . 2 ⊢ (𝜑 → 〈(2nd ↾ (Base‘(𝐴 ×c 𝐶))), (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)))〉 = 〈(2nd ↾ (Base‘(𝐵 ×c 𝐷))), (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))〉) |
| 17 | eqid 2729 | . . 3 ⊢ (𝐴 ×c 𝐶) = (𝐴 ×c 𝐶) | |
| 18 | eqid 2729 | . . 3 ⊢ (Base‘(𝐴 ×c 𝐶)) = (Base‘(𝐴 ×c 𝐶)) | |
| 19 | eqid 2729 | . . 3 ⊢ (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐴 ×c 𝐶)) | |
| 20 | eqid 2729 | . . 3 ⊢ (𝐴 2ndF 𝐶) = (𝐴 2ndF 𝐶) | |
| 21 | 17, 18, 19, 5, 7, 20 | 2ndfval 18100 | . 2 ⊢ (𝜑 → (𝐴 2ndF 𝐶) = 〈(2nd ↾ (Base‘(𝐴 ×c 𝐶))), (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)))〉) |
| 22 | eqid 2729 | . . 3 ⊢ (𝐵 ×c 𝐷) = (𝐵 ×c 𝐷) | |
| 23 | eqid 2729 | . . 3 ⊢ (Base‘(𝐵 ×c 𝐷)) = (Base‘(𝐵 ×c 𝐷)) | |
| 24 | eqid 2729 | . . 3 ⊢ (Hom ‘(𝐵 ×c 𝐷)) = (Hom ‘(𝐵 ×c 𝐷)) | |
| 25 | eqid 2729 | . . 3 ⊢ (𝐵 2ndF 𝐷) = (𝐵 2ndF 𝐷) | |
| 26 | 22, 23, 24, 6, 8, 25 | 2ndfval 18100 | . 2 ⊢ (𝜑 → (𝐵 2ndF 𝐷) = 〈(2nd ↾ (Base‘(𝐵 ×c 𝐷))), (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))〉) |
| 27 | 16, 21, 26 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐴 2ndF 𝐶) = (𝐵 2ndF 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4583 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 2nd c2nd 7923 Basecbs 17120 Hom chom 17172 Catccat 17570 Homf chomf 17572 compfccomf 17573 ×c cxpc 18074 2ndF c2ndf 18076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-homf 17576 df-comf 17577 df-xpc 18078 df-2ndf 18080 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |