| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndfpropd | Structured version Visualization version GIF version | ||
| Description: If two categories have the same set of objects, morphisms, and compositions, then they have same second projection functors. (Contributed by Zhi Wang, 20-Nov-2025.) |
| Ref | Expression |
|---|---|
| 1stfpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
| 1stfpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
| 1stfpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| 1stfpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| 1stfpropd.a | ⊢ (𝜑 → 𝐴 ∈ Cat) |
| 1stfpropd.b | ⊢ (𝜑 → 𝐵 ∈ Cat) |
| 1stfpropd.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfpropd.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| 2ndfpropd | ⊢ (𝜑 → (𝐴 2ndF 𝐶) = (𝐵 2ndF 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfpropd.1 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
| 2 | 1stfpropd.2 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
| 3 | 1stfpropd.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 4 | 1stfpropd.4 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 5 | 1stfpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Cat) | |
| 6 | 1stfpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ Cat) | |
| 7 | 1stfpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | 1stfpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpcpropd 18175 | . . . . 5 ⊢ (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷)) |
| 10 | 9 | fveq2d 6864 | . . . 4 ⊢ (𝜑 → (Base‘(𝐴 ×c 𝐶)) = (Base‘(𝐵 ×c 𝐷))) |
| 11 | 10 | reseq2d 5952 | . . 3 ⊢ (𝜑 → (2nd ↾ (Base‘(𝐴 ×c 𝐶))) = (2nd ↾ (Base‘(𝐵 ×c 𝐷)))) |
| 12 | 9 | fveq2d 6864 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐵 ×c 𝐷))) |
| 13 | 12 | oveqd 7406 | . . . . 5 ⊢ (𝜑 → (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦) = (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)) |
| 14 | 13 | reseq2d 5952 | . . . 4 ⊢ (𝜑 → (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)) = (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦))) |
| 15 | 10, 10, 14 | mpoeq123dv 7466 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦))) = (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))) |
| 16 | 11, 15 | opeq12d 4847 | . 2 ⊢ (𝜑 → 〈(2nd ↾ (Base‘(𝐴 ×c 𝐶))), (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)))〉 = 〈(2nd ↾ (Base‘(𝐵 ×c 𝐷))), (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))〉) |
| 17 | eqid 2730 | . . 3 ⊢ (𝐴 ×c 𝐶) = (𝐴 ×c 𝐶) | |
| 18 | eqid 2730 | . . 3 ⊢ (Base‘(𝐴 ×c 𝐶)) = (Base‘(𝐴 ×c 𝐶)) | |
| 19 | eqid 2730 | . . 3 ⊢ (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐴 ×c 𝐶)) | |
| 20 | eqid 2730 | . . 3 ⊢ (𝐴 2ndF 𝐶) = (𝐴 2ndF 𝐶) | |
| 21 | 17, 18, 19, 5, 7, 20 | 2ndfval 18161 | . 2 ⊢ (𝜑 → (𝐴 2ndF 𝐶) = 〈(2nd ↾ (Base‘(𝐴 ×c 𝐶))), (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)))〉) |
| 22 | eqid 2730 | . . 3 ⊢ (𝐵 ×c 𝐷) = (𝐵 ×c 𝐷) | |
| 23 | eqid 2730 | . . 3 ⊢ (Base‘(𝐵 ×c 𝐷)) = (Base‘(𝐵 ×c 𝐷)) | |
| 24 | eqid 2730 | . . 3 ⊢ (Hom ‘(𝐵 ×c 𝐷)) = (Hom ‘(𝐵 ×c 𝐷)) | |
| 25 | eqid 2730 | . . 3 ⊢ (𝐵 2ndF 𝐷) = (𝐵 2ndF 𝐷) | |
| 26 | 22, 23, 24, 6, 8, 25 | 2ndfval 18161 | . 2 ⊢ (𝜑 → (𝐵 2ndF 𝐷) = 〈(2nd ↾ (Base‘(𝐵 ×c 𝐷))), (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))〉) |
| 27 | 16, 21, 26 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (𝐴 2ndF 𝐶) = (𝐵 2ndF 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4597 ↾ cres 5642 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 2nd c2nd 7969 Basecbs 17185 Hom chom 17237 Catccat 17631 Homf chomf 17633 compfccomf 17634 ×c cxpc 18135 2ndF c2ndf 18137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-homf 17637 df-comf 17638 df-xpc 18139 df-2ndf 18141 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |