| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndfpropd | Structured version Visualization version GIF version | ||
| Description: If two categories have the same set of objects, morphisms, and compositions, then they have same second projection functors. (Contributed by Zhi Wang, 20-Nov-2025.) |
| Ref | Expression |
|---|---|
| 1stfpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
| 1stfpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
| 1stfpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| 1stfpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| 1stfpropd.a | ⊢ (𝜑 → 𝐴 ∈ Cat) |
| 1stfpropd.b | ⊢ (𝜑 → 𝐵 ∈ Cat) |
| 1stfpropd.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfpropd.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| 2ndfpropd | ⊢ (𝜑 → (𝐴 2ndF 𝐶) = (𝐵 2ndF 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfpropd.1 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
| 2 | 1stfpropd.2 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
| 3 | 1stfpropd.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 4 | 1stfpropd.4 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 5 | 1stfpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Cat) | |
| 6 | 1stfpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ Cat) | |
| 7 | 1stfpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | 1stfpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpcpropd 18122 | . . . . 5 ⊢ (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷)) |
| 10 | 9 | fveq2d 6835 | . . . 4 ⊢ (𝜑 → (Base‘(𝐴 ×c 𝐶)) = (Base‘(𝐵 ×c 𝐷))) |
| 11 | 10 | reseq2d 5935 | . . 3 ⊢ (𝜑 → (2nd ↾ (Base‘(𝐴 ×c 𝐶))) = (2nd ↾ (Base‘(𝐵 ×c 𝐷)))) |
| 12 | 9 | fveq2d 6835 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐵 ×c 𝐷))) |
| 13 | 12 | oveqd 7372 | . . . . 5 ⊢ (𝜑 → (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦) = (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)) |
| 14 | 13 | reseq2d 5935 | . . . 4 ⊢ (𝜑 → (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)) = (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦))) |
| 15 | 10, 10, 14 | mpoeq123dv 7430 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦))) = (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))) |
| 16 | 11, 15 | opeq12d 4834 | . 2 ⊢ (𝜑 → 〈(2nd ↾ (Base‘(𝐴 ×c 𝐶))), (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)))〉 = 〈(2nd ↾ (Base‘(𝐵 ×c 𝐷))), (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))〉) |
| 17 | eqid 2733 | . . 3 ⊢ (𝐴 ×c 𝐶) = (𝐴 ×c 𝐶) | |
| 18 | eqid 2733 | . . 3 ⊢ (Base‘(𝐴 ×c 𝐶)) = (Base‘(𝐴 ×c 𝐶)) | |
| 19 | eqid 2733 | . . 3 ⊢ (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐴 ×c 𝐶)) | |
| 20 | eqid 2733 | . . 3 ⊢ (𝐴 2ndF 𝐶) = (𝐴 2ndF 𝐶) | |
| 21 | 17, 18, 19, 5, 7, 20 | 2ndfval 18108 | . 2 ⊢ (𝜑 → (𝐴 2ndF 𝐶) = 〈(2nd ↾ (Base‘(𝐴 ×c 𝐶))), (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)))〉) |
| 22 | eqid 2733 | . . 3 ⊢ (𝐵 ×c 𝐷) = (𝐵 ×c 𝐷) | |
| 23 | eqid 2733 | . . 3 ⊢ (Base‘(𝐵 ×c 𝐷)) = (Base‘(𝐵 ×c 𝐷)) | |
| 24 | eqid 2733 | . . 3 ⊢ (Hom ‘(𝐵 ×c 𝐷)) = (Hom ‘(𝐵 ×c 𝐷)) | |
| 25 | eqid 2733 | . . 3 ⊢ (𝐵 2ndF 𝐷) = (𝐵 2ndF 𝐷) | |
| 26 | 22, 23, 24, 6, 8, 25 | 2ndfval 18108 | . 2 ⊢ (𝜑 → (𝐵 2ndF 𝐷) = 〈(2nd ↾ (Base‘(𝐵 ×c 𝐷))), (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))〉) |
| 27 | 16, 21, 26 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (𝐴 2ndF 𝐶) = (𝐵 2ndF 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 〈cop 4583 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 2nd c2nd 7929 Basecbs 17127 Hom chom 17179 Catccat 17578 Homf chomf 17580 compfccomf 17581 ×c cxpc 18082 2ndF c2ndf 18084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-homf 17584 df-comf 17585 df-xpc 18086 df-2ndf 18088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |