| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndfpropd | Structured version Visualization version GIF version | ||
| Description: If two categories have the same set of objects, morphisms, and compositions, then they have same second projection functors. (Contributed by Zhi Wang, 20-Nov-2025.) |
| Ref | Expression |
|---|---|
| 1stfpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
| 1stfpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
| 1stfpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| 1stfpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| 1stfpropd.a | ⊢ (𝜑 → 𝐴 ∈ Cat) |
| 1stfpropd.b | ⊢ (𝜑 → 𝐵 ∈ Cat) |
| 1stfpropd.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfpropd.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| 2ndfpropd | ⊢ (𝜑 → (𝐴 2ndF 𝐶) = (𝐵 2ndF 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfpropd.1 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
| 2 | 1stfpropd.2 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
| 3 | 1stfpropd.3 | . . . . . 6 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 4 | 1stfpropd.4 | . . . . . 6 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 5 | 1stfpropd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Cat) | |
| 6 | 1stfpropd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ Cat) | |
| 7 | 1stfpropd.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | 1stfpropd.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpcpropd 18145 | . . . . 5 ⊢ (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷)) |
| 10 | 9 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → (Base‘(𝐴 ×c 𝐶)) = (Base‘(𝐵 ×c 𝐷))) |
| 11 | 10 | reseq2d 5939 | . . 3 ⊢ (𝜑 → (2nd ↾ (Base‘(𝐴 ×c 𝐶))) = (2nd ↾ (Base‘(𝐵 ×c 𝐷)))) |
| 12 | 9 | fveq2d 6844 | . . . . . 6 ⊢ (𝜑 → (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐵 ×c 𝐷))) |
| 13 | 12 | oveqd 7386 | . . . . 5 ⊢ (𝜑 → (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦) = (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)) |
| 14 | 13 | reseq2d 5939 | . . . 4 ⊢ (𝜑 → (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)) = (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦))) |
| 15 | 10, 10, 14 | mpoeq123dv 7444 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦))) = (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))) |
| 16 | 11, 15 | opeq12d 4841 | . 2 ⊢ (𝜑 → 〈(2nd ↾ (Base‘(𝐴 ×c 𝐶))), (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)))〉 = 〈(2nd ↾ (Base‘(𝐵 ×c 𝐷))), (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))〉) |
| 17 | eqid 2729 | . . 3 ⊢ (𝐴 ×c 𝐶) = (𝐴 ×c 𝐶) | |
| 18 | eqid 2729 | . . 3 ⊢ (Base‘(𝐴 ×c 𝐶)) = (Base‘(𝐴 ×c 𝐶)) | |
| 19 | eqid 2729 | . . 3 ⊢ (Hom ‘(𝐴 ×c 𝐶)) = (Hom ‘(𝐴 ×c 𝐶)) | |
| 20 | eqid 2729 | . . 3 ⊢ (𝐴 2ndF 𝐶) = (𝐴 2ndF 𝐶) | |
| 21 | 17, 18, 19, 5, 7, 20 | 2ndfval 18131 | . 2 ⊢ (𝜑 → (𝐴 2ndF 𝐶) = 〈(2nd ↾ (Base‘(𝐴 ×c 𝐶))), (𝑥 ∈ (Base‘(𝐴 ×c 𝐶)), 𝑦 ∈ (Base‘(𝐴 ×c 𝐶)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐴 ×c 𝐶))𝑦)))〉) |
| 22 | eqid 2729 | . . 3 ⊢ (𝐵 ×c 𝐷) = (𝐵 ×c 𝐷) | |
| 23 | eqid 2729 | . . 3 ⊢ (Base‘(𝐵 ×c 𝐷)) = (Base‘(𝐵 ×c 𝐷)) | |
| 24 | eqid 2729 | . . 3 ⊢ (Hom ‘(𝐵 ×c 𝐷)) = (Hom ‘(𝐵 ×c 𝐷)) | |
| 25 | eqid 2729 | . . 3 ⊢ (𝐵 2ndF 𝐷) = (𝐵 2ndF 𝐷) | |
| 26 | 22, 23, 24, 6, 8, 25 | 2ndfval 18131 | . 2 ⊢ (𝜑 → (𝐵 2ndF 𝐷) = 〈(2nd ↾ (Base‘(𝐵 ×c 𝐷))), (𝑥 ∈ (Base‘(𝐵 ×c 𝐷)), 𝑦 ∈ (Base‘(𝐵 ×c 𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐵 ×c 𝐷))𝑦)))〉) |
| 27 | 16, 21, 26 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐴 2ndF 𝐶) = (𝐵 2ndF 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4591 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 2nd c2nd 7946 Basecbs 17155 Hom chom 17207 Catccat 17601 Homf chomf 17603 compfccomf 17604 ×c cxpc 18105 2ndF c2ndf 18107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-homf 17607 df-comf 17608 df-xpc 18109 df-2ndf 18111 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |