| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diagpropd | Structured version Visualization version GIF version | ||
| Description: If two categories have the same set of objects, morphisms, and compositions, then they have same diagonal functors. (Contributed by Zhi Wang, 20-Nov-2025.) |
| Ref | Expression |
|---|---|
| 1stfpropd.1 | ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) |
| 1stfpropd.2 | ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) |
| 1stfpropd.3 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| 1stfpropd.4 | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| 1stfpropd.a | ⊢ (𝜑 → 𝐴 ∈ Cat) |
| 1stfpropd.b | ⊢ (𝜑 → 𝐵 ∈ Cat) |
| 1stfpropd.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfpropd.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| Ref | Expression |
|---|---|
| diagpropd | ⊢ (𝜑 → (𝐴Δfunc𝐶) = (𝐵Δfunc𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfpropd.1 | . . 3 ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) | |
| 2 | 1stfpropd.2 | . . 3 ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) | |
| 3 | 1stfpropd.3 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 4 | 1stfpropd.4 | . . 3 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | |
| 5 | 1stfpropd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Cat) | |
| 6 | 1stfpropd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ Cat) | |
| 7 | 1stfpropd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | 1stfpropd.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 9 | eqid 2729 | . . . 4 ⊢ (𝐴 ×c 𝐶) = (𝐴 ×c 𝐶) | |
| 10 | eqid 2729 | . . . 4 ⊢ (𝐴 1stF 𝐶) = (𝐴 1stF 𝐶) | |
| 11 | 9, 5, 7, 10 | 1stfcl 18122 | . . 3 ⊢ (𝜑 → (𝐴 1stF 𝐶) ∈ ((𝐴 ×c 𝐶) Func 𝐴)) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | curfpropd 18158 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐶〉 curryF (𝐴 1stF 𝐶)) = (〈𝐵, 𝐷〉 curryF (𝐴 1stF 𝐶))) |
| 13 | eqid 2729 | . . 3 ⊢ (𝐴Δfunc𝐶) = (𝐴Δfunc𝐶) | |
| 14 | 13, 5, 7 | diagval 18165 | . 2 ⊢ (𝜑 → (𝐴Δfunc𝐶) = (〈𝐴, 𝐶〉 curryF (𝐴 1stF 𝐶))) |
| 15 | eqid 2729 | . . . 4 ⊢ (𝐵Δfunc𝐷) = (𝐵Δfunc𝐷) | |
| 16 | 15, 6, 8 | diagval 18165 | . . 3 ⊢ (𝜑 → (𝐵Δfunc𝐷) = (〈𝐵, 𝐷〉 curryF (𝐵 1stF 𝐷))) |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8 | 1stfpropd 49295 | . . . 4 ⊢ (𝜑 → (𝐴 1stF 𝐶) = (𝐵 1stF 𝐷)) |
| 18 | 17 | oveq2d 7369 | . . 3 ⊢ (𝜑 → (〈𝐵, 𝐷〉 curryF (𝐴 1stF 𝐶)) = (〈𝐵, 𝐷〉 curryF (𝐵 1stF 𝐷))) |
| 19 | 16, 18 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (𝐵Δfunc𝐷) = (〈𝐵, 𝐷〉 curryF (𝐴 1stF 𝐶))) |
| 20 | 12, 14, 19 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐴Δfunc𝐶) = (𝐵Δfunc𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 ‘cfv 6486 (class class class)co 7353 Catccat 17589 Homf chomf 17591 compfccomf 17592 ×c cxpc 18093 1stF c1stf 18094 curryF ccurf 18135 Δfunccdiag 18137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17140 df-hom 17204 df-cco 17205 df-cat 17593 df-cid 17594 df-homf 17595 df-comf 17596 df-func 17784 df-xpc 18097 df-1stf 18098 df-curf 18139 df-diag 18141 |
| This theorem is referenced by: lmdpropd 49662 cmdpropd 49663 cmddu 49673 |
| Copyright terms: Public domain | W3C validator |