Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islssfg Structured version   Visualization version   GIF version

Theorem islssfg 38603
Description: Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islssfg.x 𝑋 = (𝑊s 𝑈)
islssfg.s 𝑆 = (LSubSp‘𝑊)
islssfg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islssfg ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
Distinct variable groups:   𝑊,𝑏   𝑋,𝑏   𝑆,𝑏   𝑈,𝑏   𝑁,𝑏

Proof of Theorem islssfg
StepHypRef Expression
1 eqid 2778 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2 islssfg.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
31, 2lssss 19329 . . . . . 6 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
4 islssfg.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
54, 1ressbas2 16327 . . . . . 6 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
63, 5syl 17 . . . . 5 (𝑈𝑆𝑈 = (Base‘𝑋))
76pweqd 4384 . . . 4 (𝑈𝑆 → 𝒫 𝑈 = 𝒫 (Base‘𝑋))
87rexeqdv 3341 . . 3 (𝑈𝑆 → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)) ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
98adantl 475 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)) ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
10 elpwi 4389 . . . . . 6 (𝑏 ∈ 𝒫 𝑈𝑏𝑈)
11 islssfg.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
12 eqid 2778 . . . . . . . 8 (LSpan‘𝑋) = (LSpan‘𝑋)
134, 11, 12, 2lsslsp 19410 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑏𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
14133expa 1108 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
1510, 14sylan2 586 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
166ad2antlr 717 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → 𝑈 = (Base‘𝑋))
1715, 16eqeq12d 2793 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → ((𝑁𝑏) = 𝑈 ↔ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))
1817anbi2d 622 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → ((𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ (𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
1918rexbidva 3234 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
204, 2lsslmod 19355 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
21 eqid 2778 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2221, 12islmodfg 38602 . . 3 (𝑋 ∈ LMod → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
2320, 22syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
249, 19, 233bitr4rd 304 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wrex 3091  wss 3792  𝒫 cpw 4379  cfv 6135  (class class class)co 6922  Fincfn 8241  Basecbs 16255  s cress 16256  LModclmod 19255  LSubSpclss 19324  LSpanclspn 19366  LFinGenclfig 38600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-sca 16354  df-vsca 16355  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-mgp 18877  df-ur 18889  df-ring 18936  df-lmod 19257  df-lss 19325  df-lsp 19367  df-lfig 38601
This theorem is referenced by:  islssfg2  38604  lmhmfgsplit  38619
  Copyright terms: Public domain W3C validator