Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islssfg Structured version   Visualization version   GIF version

Theorem islssfg 39867
Description: Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islssfg.x 𝑋 = (𝑊s 𝑈)
islssfg.s 𝑆 = (LSubSp‘𝑊)
islssfg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islssfg ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
Distinct variable groups:   𝑊,𝑏   𝑋,𝑏   𝑆,𝑏   𝑈,𝑏   𝑁,𝑏

Proof of Theorem islssfg
StepHypRef Expression
1 eqid 2824 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2 islssfg.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
31, 2lssss 19701 . . . . . 6 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
4 islssfg.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
54, 1ressbas2 16551 . . . . . 6 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
63, 5syl 17 . . . . 5 (𝑈𝑆𝑈 = (Base‘𝑋))
76pweqd 4540 . . . 4 (𝑈𝑆 → 𝒫 𝑈 = 𝒫 (Base‘𝑋))
87rexeqdv 3404 . . 3 (𝑈𝑆 → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)) ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
98adantl 485 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)) ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
10 elpwi 4530 . . . . . 6 (𝑏 ∈ 𝒫 𝑈𝑏𝑈)
11 islssfg.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
12 eqid 2824 . . . . . . . 8 (LSpan‘𝑋) = (LSpan‘𝑋)
134, 11, 12, 2lsslsp 19780 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑏𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
14133expa 1115 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
1510, 14sylan2 595 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
166ad2antlr 726 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → 𝑈 = (Base‘𝑋))
1715, 16eqeq12d 2840 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → ((𝑁𝑏) = 𝑈 ↔ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))
1817anbi2d 631 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → ((𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ (𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
1918rexbidva 3289 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
204, 2lsslmod 19725 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
21 eqid 2824 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2221, 12islmodfg 39866 . . 3 (𝑋 ∈ LMod → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
2320, 22syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
249, 19, 233bitr4rd 315 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wrex 3134  wss 3919  𝒫 cpw 4521  cfv 6343  (class class class)co 7145  Fincfn 8499  Basecbs 16479  s cress 16480  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LFinGenclfig 39864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-sca 16577  df-vsca 16578  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-mgp 19236  df-ur 19248  df-ring 19295  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lfig 39865
This theorem is referenced by:  islssfg2  39868  lmhmfgsplit  39883
  Copyright terms: Public domain W3C validator