![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islssfg | Structured version Visualization version GIF version |
Description: Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
islssfg.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
islssfg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
islssfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
islssfg | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | islssfg.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 19329 | . . . . . 6 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
4 | islssfg.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
5 | 4, 1 | ressbas2 16327 | . . . . . 6 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝑈 ∈ 𝑆 → 𝑈 = (Base‘𝑋)) |
7 | 6 | pweqd 4384 | . . . 4 ⊢ (𝑈 ∈ 𝑆 → 𝒫 𝑈 = 𝒫 (Base‘𝑋)) |
8 | 7 | rexeqdv 3341 | . . 3 ⊢ (𝑈 ∈ 𝑆 → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)) ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))) |
9 | 8 | adantl 475 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)) ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))) |
10 | elpwi 4389 | . . . . . 6 ⊢ (𝑏 ∈ 𝒫 𝑈 → 𝑏 ⊆ 𝑈) | |
11 | islssfg.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
12 | eqid 2778 | . . . . . . . 8 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
13 | 4, 11, 12, 2 | lsslsp 19410 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑏 ⊆ 𝑈) → (𝑁‘𝑏) = ((LSpan‘𝑋)‘𝑏)) |
14 | 13 | 3expa 1108 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑏 ⊆ 𝑈) → (𝑁‘𝑏) = ((LSpan‘𝑋)‘𝑏)) |
15 | 10, 14 | sylan2 586 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → (𝑁‘𝑏) = ((LSpan‘𝑋)‘𝑏)) |
16 | 6 | ad2antlr 717 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → 𝑈 = (Base‘𝑋)) |
17 | 15, 16 | eqeq12d 2793 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → ((𝑁‘𝑏) = 𝑈 ↔ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))) |
18 | 17 | anbi2d 622 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → ((𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) ↔ (𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))) |
19 | 18 | rexbidva 3234 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈) ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))) |
20 | 4, 2 | lsslmod 19355 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
21 | eqid 2778 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
22 | 21, 12 | islmodfg 38602 | . . 3 ⊢ (𝑋 ∈ LMod → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))) |
23 | 20, 22 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))) |
24 | 9, 19, 23 | 3bitr4rd 304 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 ⊆ wss 3792 𝒫 cpw 4379 ‘cfv 6135 (class class class)co 6922 Fincfn 8241 Basecbs 16255 ↾s cress 16256 LModclmod 19255 LSubSpclss 19324 LSpanclspn 19366 LFinGenclfig 38600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-sca 16354 df-vsca 16355 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-mgp 18877 df-ur 18889 df-ring 18936 df-lmod 19257 df-lss 19325 df-lsp 19367 df-lfig 38601 |
This theorem is referenced by: islssfg2 38604 lmhmfgsplit 38619 |
Copyright terms: Public domain | W3C validator |