![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islssfg | Structured version Visualization version GIF version |
Description: Property of a finitely generated left (sub)module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
islssfg.x | β’ π = (π βΎs π) |
islssfg.s | β’ π = (LSubSpβπ) |
islssfg.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
islssfg | β’ ((π β LMod β§ π β π) β (π β LFinGen β βπ β π« π(π β Fin β§ (πβπ) = π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
2 | islssfg.s | . . . . . . 7 β’ π = (LSubSpβπ) | |
3 | 1, 2 | lssss 20827 | . . . . . 6 β’ (π β π β π β (Baseβπ)) |
4 | islssfg.x | . . . . . . 7 β’ π = (π βΎs π) | |
5 | 4, 1 | ressbas2 17225 | . . . . . 6 β’ (π β (Baseβπ) β π = (Baseβπ)) |
6 | 3, 5 | syl 17 | . . . . 5 β’ (π β π β π = (Baseβπ)) |
7 | 6 | pweqd 4623 | . . . 4 β’ (π β π β π« π = π« (Baseβπ)) |
8 | 7 | rexeqdv 3324 | . . 3 β’ (π β π β (βπ β π« π(π β Fin β§ ((LSpanβπ)βπ) = (Baseβπ)) β βπ β π« (Baseβπ)(π β Fin β§ ((LSpanβπ)βπ) = (Baseβπ)))) |
9 | 8 | adantl 480 | . 2 β’ ((π β LMod β§ π β π) β (βπ β π« π(π β Fin β§ ((LSpanβπ)βπ) = (Baseβπ)) β βπ β π« (Baseβπ)(π β Fin β§ ((LSpanβπ)βπ) = (Baseβπ)))) |
10 | elpwi 4613 | . . . . . . 7 β’ (π β π« π β π β π) | |
11 | islssfg.n | . . . . . . . . 9 β’ π = (LSpanβπ) | |
12 | eqid 2728 | . . . . . . . . 9 β’ (LSpanβπ) = (LSpanβπ) | |
13 | 4, 11, 12, 2 | lsslsp 20906 | . . . . . . . 8 β’ ((π β LMod β§ π β π β§ π β π) β ((LSpanβπ)βπ) = (πβπ)) |
14 | 13 | 3expa 1115 | . . . . . . 7 β’ (((π β LMod β§ π β π) β§ π β π) β ((LSpanβπ)βπ) = (πβπ)) |
15 | 10, 14 | sylan2 591 | . . . . . 6 β’ (((π β LMod β§ π β π) β§ π β π« π) β ((LSpanβπ)βπ) = (πβπ)) |
16 | 15 | eqcomd 2734 | . . . . 5 β’ (((π β LMod β§ π β π) β§ π β π« π) β (πβπ) = ((LSpanβπ)βπ)) |
17 | 6 | ad2antlr 725 | . . . . 5 β’ (((π β LMod β§ π β π) β§ π β π« π) β π = (Baseβπ)) |
18 | 16, 17 | eqeq12d 2744 | . . . 4 β’ (((π β LMod β§ π β π) β§ π β π« π) β ((πβπ) = π β ((LSpanβπ)βπ) = (Baseβπ))) |
19 | 18 | anbi2d 628 | . . 3 β’ (((π β LMod β§ π β π) β§ π β π« π) β ((π β Fin β§ (πβπ) = π) β (π β Fin β§ ((LSpanβπ)βπ) = (Baseβπ)))) |
20 | 19 | rexbidva 3174 | . 2 β’ ((π β LMod β§ π β π) β (βπ β π« π(π β Fin β§ (πβπ) = π) β βπ β π« π(π β Fin β§ ((LSpanβπ)βπ) = (Baseβπ)))) |
21 | 4, 2 | lsslmod 20851 | . . 3 β’ ((π β LMod β§ π β π) β π β LMod) |
22 | eqid 2728 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
23 | 22, 12 | islmodfg 42524 | . . 3 β’ (π β LMod β (π β LFinGen β βπ β π« (Baseβπ)(π β Fin β§ ((LSpanβπ)βπ) = (Baseβπ)))) |
24 | 21, 23 | syl 17 | . 2 β’ ((π β LMod β§ π β π) β (π β LFinGen β βπ β π« (Baseβπ)(π β Fin β§ ((LSpanβπ)βπ) = (Baseβπ)))) |
25 | 9, 20, 24 | 3bitr4rd 311 | 1 β’ ((π β LMod β§ π β π) β (π β LFinGen β βπ β π« π(π β Fin β§ (πβπ) = π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwrex 3067 β wss 3949 π« cpw 4606 βcfv 6553 (class class class)co 7426 Fincfn 8970 Basecbs 17187 βΎs cress 17216 LModclmod 20750 LSubSpclss 20822 LSpanclspn 20862 LFinGenclfig 42522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-sca 17256 df-vsca 17257 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-sbg 18902 df-subg 19085 df-mgp 20082 df-ur 20129 df-ring 20182 df-lmod 20752 df-lss 20823 df-lsp 20863 df-lfig 42523 |
This theorem is referenced by: islssfg2 42526 lmhmfgsplit 42541 |
Copyright terms: Public domain | W3C validator |