Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3cshw | Structured version Visualization version GIF version |
Description: Cyclically shifting a word three times results in a once cyclically shifted word under certain circumstances. (Contributed by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
Ref | Expression |
---|---|
3cshw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cshwid 14625 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = 𝑊) | |
2 | 1 | 3adant2 1130 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = 𝑊) |
3 | 2 | eqcomd 2742 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑊 = ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀))) |
4 | 3 | oveq1d 7352 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) cyclShift 𝑁)) |
5 | cshwcl 14609 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑀) ∈ Word 𝑉) | |
6 | 5 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑀) ∈ Word 𝑉) |
7 | lencl 14336 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
8 | 7 | nn0zd 12525 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
9 | zsubcl 12463 | . . . . 5 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝑊) − 𝑀) ∈ ℤ) | |
10 | 8, 9 | sylan 580 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ) → ((♯‘𝑊) − 𝑀) ∈ ℤ) |
11 | 10 | 3adant2 1130 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝑊) − 𝑀) ∈ ℤ) |
12 | simp2 1136 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ) | |
13 | 2cshwcom 14627 | . . 3 ⊢ (((𝑊 cyclShift 𝑀) ∈ Word 𝑉 ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑀))) | |
14 | 6, 11, 12, 13 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑀))) |
15 | 4, 14 | eqtrd 2776 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 − cmin 11306 ℤcz 12420 ♯chash 14145 Word cword 14317 cyclShift ccsh 14599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-fl 13613 df-mod 13691 df-hash 14146 df-word 14318 df-concat 14374 df-substr 14452 df-pfx 14482 df-csh 14600 |
This theorem is referenced by: cshweqdif2 14630 |
Copyright terms: Public domain | W3C validator |