MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshweqdif2 Structured version   Visualization version   GIF version

Theorem cshweqdif2 14857
Description: If cyclically shifting two words (of the same length) results in the same word, cyclically shifting one of the words by the difference of the numbers of shifts results in the other word. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshweqdif2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀𝑁)) = 𝑊))

Proof of Theorem cshweqdif2
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → 𝑈 ∈ Word 𝑉)
21adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑈 ∈ Word 𝑉)
3 zsubcl 12659 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
43ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
54adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀𝑁) ∈ ℤ)
6 simpr 484 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
76adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ)
82, 5, 73jca 1129 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑈 ∈ Word 𝑉 ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ))
98adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 ∈ Word 𝑉 ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ))
10 3cshw 14856 . . . . . 6 ((𝑈 ∈ Word 𝑉 ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑈 cyclShift (𝑀𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑈) − 𝑀)))
119, 10syl 17 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑈) − 𝑀)))
12 simpl 482 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
1312ancomd 461 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑈 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
1413adantr 480 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
15 simpr 484 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
1615ancomd 461 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
1716adantr 480 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
18 simpr 484 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀))
1918eqcomd 2743 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift 𝑀) = (𝑊 cyclShift 𝑁))
20 cshwleneq 14855 . . . . . . . 8 (((𝑈 ∈ Word 𝑉𝑊 ∈ Word 𝑉) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑈 cyclShift 𝑀) = (𝑊 cyclShift 𝑁)) → (♯‘𝑈) = (♯‘𝑊))
2114, 17, 19, 20syl3anc 1373 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑈) = (♯‘𝑊))
2221oveq1d 7446 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((♯‘𝑈) − 𝑀) = ((♯‘𝑊) − 𝑀))
2322oveq2d 7447 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑈) − 𝑀)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑊) − 𝑀)))
2411, 23eqtrd 2777 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑊) − 𝑀)))
2519oveq1d 7446 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) = ((𝑊 cyclShift 𝑁) cyclShift (𝑀𝑁)))
26 simpl 482 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉)
2726adantr 480 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
28 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ)
2928adantl 481 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ)
3027, 29, 53jca 1129 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ))
3130adantr 480 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ))
32 2cshw 14851 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift (𝑀𝑁)) = (𝑊 cyclShift (𝑁 + (𝑀𝑁))))
3331, 32syl 17 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑊 cyclShift 𝑁) cyclShift (𝑀𝑁)) = (𝑊 cyclShift (𝑁 + (𝑀𝑁))))
34 zcn 12618 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
35 zcn 12618 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3634, 35anim12i 613 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
3736adantl 481 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
3837adantr 480 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
39 pncan3 11516 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + (𝑀𝑁)) = 𝑀)
4038, 39syl 17 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑁 + (𝑀𝑁)) = 𝑀)
4140oveq2d 7447 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (𝑁 + (𝑀𝑁))) = (𝑊 cyclShift 𝑀))
4225, 33, 413eqtrd 2781 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) = (𝑊 cyclShift 𝑀))
4342oveq1d 7446 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑊) − 𝑀)) = ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)))
44 lencl 14571 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
4544nn0zd 12639 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
4645adantr 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℤ)
47 zsubcl 12659 . . . . . . . 8 (((♯‘𝑊) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝑊) − 𝑀) ∈ ℤ)
4846, 6, 47syl2an 596 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((♯‘𝑊) − 𝑀) ∈ ℤ)
4927, 7, 483jca 1129 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ))
5049adantr 480 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ))
51 2cshw 14851 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))))
5250, 51syl 17 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))))
5324, 43, 523eqtrd 2781 . . 3 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀𝑁)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))))
5444nn0cnd 12589 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
5554adantr 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℂ)
5635adantl 481 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ)
5755, 56anim12i 613 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑀 ∈ ℂ))
5857ancomd 461 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈ ℂ))
5958adantr 480 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈ ℂ))
60 pncan3 11516 . . . . 5 ((𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈ ℂ) → (𝑀 + ((♯‘𝑊) − 𝑀)) = (♯‘𝑊))
6159, 60syl 17 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 + ((♯‘𝑊) − 𝑀)) = (♯‘𝑊))
6261oveq2d 7447 . . 3 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))) = (𝑊 cyclShift (♯‘𝑊)))
63 cshwn 14835 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
6427, 63syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
6564adantr 480 . . 3 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
6653, 62, 653eqtrd 2781 . 2 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀𝑁)) = 𝑊)
6766ex 412 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀𝑁)) = 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153   + caddc 11158  cmin 11492  cz 12613  chash 14369  Word cword 14552   cyclShift ccsh 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-csh 14827
This theorem is referenced by:  cshweqdifid  14858
  Copyright terms: Public domain W3C validator