MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshweqdif2 Structured version   Visualization version   GIF version

Theorem cshweqdif2 14172
Description: If cyclically shifting two words (of the same length) results in the same word, cyclically shifting one of the words by the difference of the numbers of shifts results in the other word. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.)
Assertion
Ref Expression
cshweqdif2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀𝑁)) = 𝑊))

Proof of Theorem cshweqdif2
StepHypRef Expression
1 simpr 488 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → 𝑈 ∈ Word 𝑉)
21adantr 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑈 ∈ Word 𝑉)
3 zsubcl 12012 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
43ancoms 462 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
54adantl 485 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀𝑁) ∈ ℤ)
6 simpr 488 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
76adantl 485 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ)
82, 5, 73jca 1125 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑈 ∈ Word 𝑉 ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ))
98adantr 484 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 ∈ Word 𝑉 ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ))
10 3cshw 14171 . . . . . 6 ((𝑈 ∈ Word 𝑉 ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑈 cyclShift (𝑀𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑈) − 𝑀)))
119, 10syl 17 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑈) − 𝑀)))
12 simpl 486 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
1312ancomd 465 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑈 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
1413adantr 484 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 ∈ Word 𝑉𝑊 ∈ Word 𝑉))
15 simpr 488 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
1615ancomd 465 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
1716adantr 484 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
18 simpr 488 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀))
1918eqcomd 2804 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift 𝑀) = (𝑊 cyclShift 𝑁))
20 cshwleneq 14170 . . . . . . . 8 (((𝑈 ∈ Word 𝑉𝑊 ∈ Word 𝑉) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑈 cyclShift 𝑀) = (𝑊 cyclShift 𝑁)) → (♯‘𝑈) = (♯‘𝑊))
2114, 17, 19, 20syl3anc 1368 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑈) = (♯‘𝑊))
2221oveq1d 7150 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((♯‘𝑈) − 𝑀) = ((♯‘𝑊) − 𝑀))
2322oveq2d 7151 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑈) − 𝑀)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑊) − 𝑀)))
2411, 23eqtrd 2833 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑊) − 𝑀)))
2519oveq1d 7150 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) = ((𝑊 cyclShift 𝑁) cyclShift (𝑀𝑁)))
26 simpl 486 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉)
2726adantr 484 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
28 simpl 486 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑁 ∈ ℤ)
2928adantl 485 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ)
3027, 29, 53jca 1125 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ))
3130adantr 484 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ))
32 2cshw 14166 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift (𝑀𝑁)) = (𝑊 cyclShift (𝑁 + (𝑀𝑁))))
3331, 32syl 17 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑊 cyclShift 𝑁) cyclShift (𝑀𝑁)) = (𝑊 cyclShift (𝑁 + (𝑀𝑁))))
34 zcn 11974 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
35 zcn 11974 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3634, 35anim12i 615 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
3736adantl 485 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
3837adantr 484 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
39 pncan3 10883 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + (𝑀𝑁)) = 𝑀)
4038, 39syl 17 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑁 + (𝑀𝑁)) = 𝑀)
4140oveq2d 7151 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (𝑁 + (𝑀𝑁))) = (𝑊 cyclShift 𝑀))
4225, 33, 413eqtrd 2837 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) = (𝑊 cyclShift 𝑀))
4342oveq1d 7150 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (((𝑈 cyclShift 𝑀) cyclShift (𝑀𝑁)) cyclShift ((♯‘𝑊) − 𝑀)) = ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)))
44 lencl 13876 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
4544nn0zd 12073 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
4645adantr 484 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℤ)
47 zsubcl 12012 . . . . . . . 8 (((♯‘𝑊) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝑊) − 𝑀) ∈ ℤ)
4846, 6, 47syl2an 598 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((♯‘𝑊) − 𝑀) ∈ ℤ)
4927, 7, 483jca 1125 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ))
5049adantr 484 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ))
51 2cshw 14166 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))))
5250, 51syl 17 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))))
5324, 43, 523eqtrd 2837 . . 3 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀𝑁)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))))
5444nn0cnd 11945 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
5554adantr 484 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℂ)
5635adantl 485 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ)
5755, 56anim12i 615 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((♯‘𝑊) ∈ ℂ ∧ 𝑀 ∈ ℂ))
5857ancomd 465 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈ ℂ))
5958adantr 484 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈ ℂ))
60 pncan3 10883 . . . . 5 ((𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈ ℂ) → (𝑀 + ((♯‘𝑊) − 𝑀)) = (♯‘𝑊))
6159, 60syl 17 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 + ((♯‘𝑊) − 𝑀)) = (♯‘𝑊))
6261oveq2d 7151 . . 3 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))) = (𝑊 cyclShift (♯‘𝑊)))
63 cshwn 14150 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
6427, 63syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
6564adantr 484 . . 3 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊)
6653, 62, 653eqtrd 2837 . 2 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀𝑁)) = 𝑊)
6766ex 416 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀𝑁)) = 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524   + caddc 10529  cmin 10859  cz 11969  chash 13686  Word cword 13857   cyclShift ccsh 14141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-csh 14142
This theorem is referenced by:  cshweqdifid  14173
  Copyright terms: Public domain W3C validator