Proof of Theorem cshweqdif2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → 𝑈 ∈ Word 𝑉) | 
| 2 | 1 | adantr 480 | . . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑈 ∈ Word 𝑉) | 
| 3 |  | zsubcl 12661 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | 
| 4 | 3 | ancoms 458 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | 
| 5 | 4 | adantl 481 | . . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 − 𝑁) ∈ ℤ) | 
| 6 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈
ℤ) | 
| 7 | 6 | adantl 481 | . . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ) | 
| 8 | 2, 5, 7 | 3jca 1128 | . . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ)) | 
| 9 | 8 | adantr 480 | . . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ)) | 
| 10 |  | 3cshw 14857 | . . . . . 6
⊢ ((𝑈 ∈ Word 𝑉 ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑈 cyclShift (𝑀 − 𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑈) − 𝑀))) | 
| 11 | 9, 10 | syl 17 | . . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀 − 𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑈) − 𝑀))) | 
| 12 |  | simpl 482 | . . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉)) | 
| 13 | 12 | ancomd 461 | . . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉)) | 
| 14 | 13 | adantr 480 | . . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉)) | 
| 15 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) | 
| 16 | 15 | ancomd 461 | . . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | 
| 17 | 16 | adantr 480 | . . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | 
| 18 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) | 
| 19 | 18 | eqcomd 2742 | . . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift 𝑀) = (𝑊 cyclShift 𝑁)) | 
| 20 |  | cshwleneq 14856 | . . . . . . . 8
⊢ (((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑈 cyclShift 𝑀) = (𝑊 cyclShift 𝑁)) → (♯‘𝑈) = (♯‘𝑊)) | 
| 21 | 14, 17, 19, 20 | syl3anc 1372 | . . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑈) = (♯‘𝑊)) | 
| 22 | 21 | oveq1d 7447 | . . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((♯‘𝑈) − 𝑀) = ((♯‘𝑊) − 𝑀)) | 
| 23 | 22 | oveq2d 7448 | . . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑈) − 𝑀)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑊) − 𝑀))) | 
| 24 | 11, 23 | eqtrd 2776 | . . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀 − 𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑊) − 𝑀))) | 
| 25 | 19 | oveq1d 7447 | . . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) = ((𝑊 cyclShift 𝑁) cyclShift (𝑀 − 𝑁))) | 
| 26 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉) | 
| 27 | 26 | adantr 480 | . . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑊 ∈ Word 𝑉) | 
| 28 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑁 ∈
ℤ) | 
| 29 | 28 | adantl 481 | . . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ) | 
| 30 | 27, 29, 5 | 3jca 1128 | . . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ)) | 
| 31 | 30 | adantr 480 | . . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ)) | 
| 32 |  | 2cshw 14852 | . . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift (𝑀 − 𝑁)) = (𝑊 cyclShift (𝑁 + (𝑀 − 𝑁)))) | 
| 33 | 31, 32 | syl 17 | . . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑊 cyclShift 𝑁) cyclShift (𝑀 − 𝑁)) = (𝑊 cyclShift (𝑁 + (𝑀 − 𝑁)))) | 
| 34 |  | zcn 12620 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) | 
| 35 |  | zcn 12620 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) | 
| 36 | 34, 35 | anim12i 613 | . . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℂ ∧ 𝑀 ∈
ℂ)) | 
| 37 | 36 | adantl 481 | . . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ)) | 
| 38 | 37 | adantr 480 | . . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ)) | 
| 39 |  | pncan3 11517 | . . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + (𝑀 − 𝑁)) = 𝑀) | 
| 40 | 38, 39 | syl 17 | . . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑁 + (𝑀 − 𝑁)) = 𝑀) | 
| 41 | 40 | oveq2d 7448 | . . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (𝑁 + (𝑀 − 𝑁))) = (𝑊 cyclShift 𝑀)) | 
| 42 | 25, 33, 41 | 3eqtrd 2780 | . . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) = (𝑊 cyclShift 𝑀)) | 
| 43 | 42 | oveq1d 7447 | . . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑊) − 𝑀)) = ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀))) | 
| 44 |  | lencl 14572 | . . . . . . . . . 10
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈
ℕ0) | 
| 45 | 44 | nn0zd 12641 | . . . . . . . . 9
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) | 
| 46 | 45 | adantr 480 | . . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℤ) | 
| 47 |  | zsubcl 12661 | . . . . . . . 8
⊢
(((♯‘𝑊)
∈ ℤ ∧ 𝑀
∈ ℤ) → ((♯‘𝑊) − 𝑀) ∈ ℤ) | 
| 48 | 46, 6, 47 | syl2an 596 | . . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) →
((♯‘𝑊) −
𝑀) ∈
ℤ) | 
| 49 | 27, 7, 48 | 3jca 1128 | . . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ)) | 
| 50 | 49 | adantr 480 | . . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ)) | 
| 51 |  | 2cshw 14852 | . . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀)))) | 
| 52 | 50, 51 | syl 17 | . . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀)))) | 
| 53 | 24, 43, 52 | 3eqtrd 2780 | . . 3
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀 − 𝑁)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀)))) | 
| 54 | 44 | nn0cnd 12591 | . . . . . . . . 9
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ) | 
| 55 | 54 | adantr 480 | . . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℂ) | 
| 56 | 35 | adantl 481 | . . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈
ℂ) | 
| 57 | 55, 56 | anim12i 613 | . . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) →
((♯‘𝑊) ∈
ℂ ∧ 𝑀 ∈
ℂ)) | 
| 58 | 57 | ancomd 461 | . . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈
ℂ)) | 
| 59 | 58 | adantr 480 | . . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈
ℂ)) | 
| 60 |  | pncan3 11517 | . . . . 5
⊢ ((𝑀 ∈ ℂ ∧
(♯‘𝑊) ∈
ℂ) → (𝑀 +
((♯‘𝑊) −
𝑀)) = (♯‘𝑊)) | 
| 61 | 59, 60 | syl 17 | . . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 + ((♯‘𝑊) − 𝑀)) = (♯‘𝑊)) | 
| 62 | 61 | oveq2d 7448 | . . 3
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))) = (𝑊 cyclShift (♯‘𝑊))) | 
| 63 |  | cshwn 14836 | . . . . 5
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) | 
| 64 | 27, 63 | syl 17 | . . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) | 
| 65 | 64 | adantr 480 | . . 3
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) | 
| 66 | 53, 62, 65 | 3eqtrd 2780 | . 2
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀 − 𝑁)) = 𝑊) | 
| 67 | 66 | ex 412 | 1
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀 − 𝑁)) = 𝑊)) |