Proof of Theorem cshweqdif2
Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → 𝑈 ∈ Word 𝑉) |
2 | 1 | adantr 480 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑈 ∈ Word 𝑉) |
3 | | zsubcl 12292 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
4 | 3 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
5 | 4 | adantl 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 − 𝑁) ∈ ℤ) |
6 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈
ℤ) |
7 | 6 | adantl 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ) |
8 | 2, 5, 7 | 3jca 1126 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
10 | | 3cshw 14459 |
. . . . . 6
⊢ ((𝑈 ∈ Word 𝑉 ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑈 cyclShift (𝑀 − 𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑈) − 𝑀))) |
11 | 9, 10 | syl 17 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀 − 𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑈) − 𝑀))) |
12 | | simpl 482 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉)) |
13 | 12 | ancomd 461 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉)) |
14 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉)) |
15 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
16 | 15 | ancomd 461 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
18 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) |
19 | 18 | eqcomd 2744 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift 𝑀) = (𝑊 cyclShift 𝑁)) |
20 | | cshwleneq 14458 |
. . . . . . . 8
⊢ (((𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑈 cyclShift 𝑀) = (𝑊 cyclShift 𝑁)) → (♯‘𝑈) = (♯‘𝑊)) |
21 | 14, 17, 19, 20 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑈) = (♯‘𝑊)) |
22 | 21 | oveq1d 7270 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((♯‘𝑈) − 𝑀) = ((♯‘𝑊) − 𝑀)) |
23 | 22 | oveq2d 7271 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑈) − 𝑀)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑊) − 𝑀))) |
24 | 11, 23 | eqtrd 2778 |
. . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀 − 𝑁)) = (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑊) − 𝑀))) |
25 | 19 | oveq1d 7270 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) = ((𝑊 cyclShift 𝑁) cyclShift (𝑀 − 𝑁))) |
26 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉) |
27 | 26 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑊 ∈ Word 𝑉) |
28 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑁 ∈
ℤ) |
29 | 28 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ) |
30 | 27, 29, 5 | 3jca 1126 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ)) |
31 | 30 | adantr 480 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ)) |
32 | | 2cshw 14454 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift (𝑀 − 𝑁)) = (𝑊 cyclShift (𝑁 + (𝑀 − 𝑁)))) |
33 | 31, 32 | syl 17 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑊 cyclShift 𝑁) cyclShift (𝑀 − 𝑁)) = (𝑊 cyclShift (𝑁 + (𝑀 − 𝑁)))) |
34 | | zcn 12254 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
35 | | zcn 12254 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
36 | 34, 35 | anim12i 612 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℂ ∧ 𝑀 ∈
ℂ)) |
37 | 36 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ)) |
38 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ)) |
39 | | pncan3 11159 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + (𝑀 − 𝑁)) = 𝑀) |
40 | 38, 39 | syl 17 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑁 + (𝑀 − 𝑁)) = 𝑀) |
41 | 40 | oveq2d 7271 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (𝑁 + (𝑀 − 𝑁))) = (𝑊 cyclShift 𝑀)) |
42 | 25, 33, 41 | 3eqtrd 2782 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) = (𝑊 cyclShift 𝑀)) |
43 | 42 | oveq1d 7270 |
. . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (((𝑈 cyclShift 𝑀) cyclShift (𝑀 − 𝑁)) cyclShift ((♯‘𝑊) − 𝑀)) = ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀))) |
44 | | lencl 14164 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈
ℕ0) |
45 | 44 | nn0zd 12353 |
. . . . . . . . 9
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
46 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℤ) |
47 | | zsubcl 12292 |
. . . . . . . 8
⊢
(((♯‘𝑊)
∈ ℤ ∧ 𝑀
∈ ℤ) → ((♯‘𝑊) − 𝑀) ∈ ℤ) |
48 | 46, 6, 47 | syl2an 595 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) →
((♯‘𝑊) −
𝑀) ∈
ℤ) |
49 | 27, 7, 48 | 3jca 1126 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ)) |
50 | 49 | adantr 480 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ)) |
51 | | 2cshw 14454 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ((♯‘𝑊) − 𝑀) ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀)))) |
52 | 50, 51 | syl 17 |
. . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → ((𝑊 cyclShift 𝑀) cyclShift ((♯‘𝑊) − 𝑀)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀)))) |
53 | 24, 43, 52 | 3eqtrd 2782 |
. . 3
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀 − 𝑁)) = (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀)))) |
54 | 44 | nn0cnd 12225 |
. . . . . . . . 9
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ) |
55 | 54 | adantr 480 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℂ) |
56 | 35 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈
ℂ) |
57 | 55, 56 | anim12i 612 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) →
((♯‘𝑊) ∈
ℂ ∧ 𝑀 ∈
ℂ)) |
58 | 57 | ancomd 461 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈
ℂ)) |
59 | 58 | adantr 480 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 ∈ ℂ ∧ (♯‘𝑊) ∈
ℂ)) |
60 | | pncan3 11159 |
. . . . 5
⊢ ((𝑀 ∈ ℂ ∧
(♯‘𝑊) ∈
ℂ) → (𝑀 +
((♯‘𝑊) −
𝑀)) = (♯‘𝑊)) |
61 | 59, 60 | syl 17 |
. . . 4
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑀 + ((♯‘𝑊) − 𝑀)) = (♯‘𝑊)) |
62 | 61 | oveq2d 7271 |
. . 3
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (𝑀 + ((♯‘𝑊) − 𝑀))) = (𝑊 cyclShift (♯‘𝑊))) |
63 | | cshwn 14438 |
. . . . 5
⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
64 | 27, 63 | syl 17 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
65 | 64 | adantr 480 |
. . 3
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) |
66 | 53, 62, 65 | 3eqtrd 2782 |
. 2
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (𝑈 cyclShift (𝑀 − 𝑁)) = 𝑊) |
67 | 66 | ex 412 |
1
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀 − 𝑁)) = 𝑊)) |