Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsdrsel | Structured version Visualization version GIF version |
Description: An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsdrsel | ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → ∪ 𝑌 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6676 | . . . . 5 ⊢ (𝑠 = 𝑌 → (toInc‘𝑠) = (toInc‘𝑌)) | |
2 | 1 | eleq1d 2817 | . . . 4 ⊢ (𝑠 = 𝑌 → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘𝑌) ∈ Dirset)) |
3 | unieq 4807 | . . . . 5 ⊢ (𝑠 = 𝑌 → ∪ 𝑠 = ∪ 𝑌) | |
4 | 3 | eleq1d 2817 | . . . 4 ⊢ (𝑠 = 𝑌 → (∪ 𝑠 ∈ 𝐶 ↔ ∪ 𝑌 ∈ 𝐶)) |
5 | 2, 4 | imbi12d 348 | . . 3 ⊢ (𝑠 = 𝑌 → (((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶) ↔ ((toInc‘𝑌) ∈ Dirset → ∪ 𝑌 ∈ 𝐶))) |
6 | isacs3lem 17894 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
7 | 6 | simprd 499 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) |
8 | 7 | adantr 484 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) |
9 | elpw2g 5212 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑌 ∈ 𝒫 𝐶 ↔ 𝑌 ⊆ 𝐶)) | |
10 | 9 | biimpar 481 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶) → 𝑌 ∈ 𝒫 𝐶) |
11 | 5, 8, 10 | rspcdva 3528 | . 2 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶) → ((toInc‘𝑌) ∈ Dirset → ∪ 𝑌 ∈ 𝐶)) |
12 | 11 | 3impia 1118 | 1 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → ∪ 𝑌 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ⊆ wss 3843 𝒫 cpw 4488 ∪ cuni 4796 ‘cfv 6339 Moorecmre 16958 ACScacs 16961 Dirsetcdrs 17655 toInccipo 17879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-5 11784 df-6 11785 df-7 11786 df-8 11787 df-9 11788 df-n0 11979 df-z 12065 df-dec 12182 df-uz 12327 df-fz 12984 df-struct 16590 df-ndx 16591 df-slot 16592 df-base 16594 df-tset 16689 df-ple 16690 df-ocomp 16691 df-mre 16962 df-mrc 16963 df-acs 16965 df-proset 17656 df-drs 17657 df-poset 17674 df-ipo 17880 |
This theorem is referenced by: isnacs3 40126 |
Copyright terms: Public domain | W3C validator |