MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdrsel Structured version   Visualization version   GIF version

Theorem acsdrsel 18529
Description: An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
acsdrsel ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → 𝑌𝐶)

Proof of Theorem acsdrsel
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . 5 (𝑠 = 𝑌 → (toInc‘𝑠) = (toInc‘𝑌))
21eleq1d 2814 . . . 4 (𝑠 = 𝑌 → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘𝑌) ∈ Dirset))
3 unieq 4915 . . . . 5 (𝑠 = 𝑌 𝑠 = 𝑌)
43eleq1d 2814 . . . 4 (𝑠 = 𝑌 → ( 𝑠𝐶 𝑌𝐶))
52, 4imbi12d 344 . . 3 (𝑠 = 𝑌 → (((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) ↔ ((toInc‘𝑌) ∈ Dirset → 𝑌𝐶)))
6 isacs3lem 18528 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
76simprd 495 . . . 4 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
87adantr 480 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
9 elpw2g 5341 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝑌 ∈ 𝒫 𝐶𝑌𝐶))
109biimpar 477 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → 𝑌 ∈ 𝒫 𝐶)
115, 8, 10rspcdva 3609 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶) → ((toInc‘𝑌) ∈ Dirset → 𝑌𝐶))
12113impia 1115 1 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → 𝑌𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  wss 3945  𝒫 cpw 4599   cuni 4904  cfv 6543  Moorecmre 17556  ACScacs 17559  Dirsetcdrs 18280  toInccipo 18513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-struct 17110  df-slot 17145  df-ndx 17157  df-base 17175  df-tset 17246  df-ple 17247  df-ocomp 17248  df-mre 17560  df-mrc 17561  df-acs 17563  df-proset 18281  df-drs 18282  df-poset 18299  df-ipo 18514
This theorem is referenced by:  isnacs3  42121
  Copyright terms: Public domain W3C validator