MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxn Structured version   Visualization version   GIF version

Theorem cshwidxn 14151
Description: The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxn ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))

Proof of Theorem cshwidxn
StepHypRef Expression
1 simpl 485 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzelz 12892 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 484 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 elfz1b 12960 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)))
5 simp2 1133 . . . . . 6 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
64, 5sylbi 219 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
76adantl 484 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 fzo0end 13113 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
97, 8syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
10 cshwidxmod 14145 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
111, 3, 9, 10syl3anc 1367 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
12 nncn 11624 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
1312adantl 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℂ)
14 1cnd 10614 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 1 ∈ ℂ)
15 nncn 11624 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 483 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 𝑁 ∈ ℂ)
1713, 14, 163jca 1124 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
18173adant3 1128 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
194, 18sylbi 219 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
20 subadd23 10876 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2119, 20syl 17 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2221oveq1d 7148 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)))
23 nnm1nn0 11917 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
24233ad2ant1 1129 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) ∈ ℕ0)
25 simp3 1134 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑁 ≤ (♯‘𝑊))
26 nnz 11983 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27 nnz 11983 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
2826, 27anim12i 614 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283adant3 1128 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 zlem1lt 12013 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3129, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3225, 31mpbid 234 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) < (♯‘𝑊))
3324, 5, 323jca 1124 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
344, 33sylbi 219 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
35 addmodid 13271 . . . . . 6 (((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3634, 35syl 17 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3722, 36eqtrd 2855 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (𝑁 − 1))
3837fveq2d 6650 . . 3 (𝑁 ∈ (1...(♯‘𝑊)) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
3938adantl 484 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
4011, 39eqtrd 2855 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5042  cfv 6331  (class class class)co 7133  cc 10513  0cc0 10515  1c1 10516   + caddc 10518   < clt 10653  cle 10654  cmin 10848  cn 11616  0cn0 11876  cz 11960  ...cfz 12876  ..^cfzo 13017   mod cmo 13221  chash 13675  Word cword 13846   cyclShift ccsh 14130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-inf 8885  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-ico 12723  df-fz 12877  df-fzo 13018  df-fl 13146  df-mod 13222  df-hash 13676  df-word 13847  df-concat 13903  df-substr 13983  df-pfx 14013  df-csh 14131
This theorem is referenced by:  lswcshw  14157
  Copyright terms: Public domain W3C validator