MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxn Structured version   Visualization version   GIF version

Theorem cshwidxn 14532
Description: The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxn ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))

Proof of Theorem cshwidxn
StepHypRef Expression
1 simpl 483 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzelz 13266 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 elfz1b 13335 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)))
5 simp2 1136 . . . . . 6 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
64, 5sylbi 216 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
76adantl 482 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 fzo0end 13489 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
97, 8syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
10 cshwidxmod 14526 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
111, 3, 9, 10syl3anc 1370 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
12 nncn 11991 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
1312adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℂ)
14 1cnd 10980 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 1 ∈ ℂ)
15 nncn 11991 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 𝑁 ∈ ℂ)
1713, 14, 163jca 1127 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
18173adant3 1131 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
194, 18sylbi 216 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
20 subadd23 11243 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2119, 20syl 17 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2221oveq1d 7282 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)))
23 nnm1nn0 12284 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
24233ad2ant1 1132 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) ∈ ℕ0)
25 simp3 1137 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑁 ≤ (♯‘𝑊))
26 nnz 12352 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27 nnz 12352 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
2826, 27anim12i 613 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283adant3 1131 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 zlem1lt 12382 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3129, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3225, 31mpbid 231 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) < (♯‘𝑊))
3324, 5, 323jca 1127 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
344, 33sylbi 216 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
35 addmodid 13649 . . . . . 6 (((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3634, 35syl 17 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3722, 36eqtrd 2778 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (𝑁 − 1))
3837fveq2d 6770 . . 3 (𝑁 ∈ (1...(♯‘𝑊)) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
3938adantl 482 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
4011, 39eqtrd 2778 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5073  cfv 6426  (class class class)co 7267  cc 10879  0cc0 10881  1c1 10882   + caddc 10884   < clt 11019  cle 11020  cmin 11215  cn 11983  0cn0 12243  cz 12329  ...cfz 13249  ..^cfzo 13392   mod cmo 13599  chash 14054  Word cword 14227   cyclShift ccsh 14511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-sup 9188  df-inf 9189  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-n0 12244  df-z 12330  df-uz 12593  df-rp 12741  df-ico 13095  df-fz 13250  df-fzo 13393  df-fl 13522  df-mod 13600  df-hash 14055  df-word 14228  df-concat 14284  df-substr 14364  df-pfx 14394  df-csh 14512
This theorem is referenced by:  lswcshw  14538
  Copyright terms: Public domain W3C validator