MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxn Structured version   Visualization version   GIF version

Theorem cshwidxn 14791
Description: The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxn ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))

Proof of Theorem cshwidxn
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzelz 13533 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 elfz1b 13602 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)))
5 simp2 1135 . . . . . 6 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
64, 5sylbi 216 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
76adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 fzo0end 13756 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
97, 8syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
10 cshwidxmod 14785 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
111, 3, 9, 10syl3anc 1369 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
12 nncn 12250 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
1312adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℂ)
14 1cnd 11239 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 1 ∈ ℂ)
15 nncn 12250 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 𝑁 ∈ ℂ)
1713, 14, 163jca 1126 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
18173adant3 1130 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
194, 18sylbi 216 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
20 subadd23 11502 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2119, 20syl 17 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2221oveq1d 7435 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)))
23 nnm1nn0 12543 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
24233ad2ant1 1131 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) ∈ ℕ0)
25 simp3 1136 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑁 ≤ (♯‘𝑊))
26 nnz 12609 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27 nnz 12609 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
2826, 27anim12i 612 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283adant3 1130 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 zlem1lt 12644 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3129, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3225, 31mpbid 231 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) < (♯‘𝑊))
3324, 5, 323jca 1126 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
344, 33sylbi 216 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
35 addmodid 13916 . . . . . 6 (((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3634, 35syl 17 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3722, 36eqtrd 2768 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (𝑁 − 1))
3837fveq2d 6901 . . 3 (𝑁 ∈ (1...(♯‘𝑊)) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
3938adantl 481 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
4011, 39eqtrd 2768 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  (class class class)co 7420  cc 11136  0cc0 11138  1c1 11139   + caddc 11141   < clt 11278  cle 11279  cmin 11474  cn 12242  0cn0 12502  cz 12588  ...cfz 13516  ..^cfzo 13659   mod cmo 13866  chash 14321  Word cword 14496   cyclShift ccsh 14770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-inf 9466  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-ico 13362  df-fz 13517  df-fzo 13660  df-fl 13789  df-mod 13867  df-hash 14322  df-word 14497  df-concat 14553  df-substr 14623  df-pfx 14653  df-csh 14771
This theorem is referenced by:  lswcshw  14797
  Copyright terms: Public domain W3C validator