MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxn Structured version   Visualization version   GIF version

Theorem cshwidxn 14857
Description: The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxn ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))

Proof of Theorem cshwidxn
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzelz 13584 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 elfz1b 13653 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)))
5 simp2 1137 . . . . . 6 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
64, 5sylbi 217 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
76adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 fzo0end 13808 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
97, 8syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
10 cshwidxmod 14851 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
111, 3, 9, 10syl3anc 1371 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
12 nncn 12301 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
1312adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℂ)
14 1cnd 11285 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 1 ∈ ℂ)
15 nncn 12301 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 𝑁 ∈ ℂ)
1713, 14, 163jca 1128 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
18173adant3 1132 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
194, 18sylbi 217 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
20 subadd23 11548 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2119, 20syl 17 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2221oveq1d 7463 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)))
23 nnm1nn0 12594 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
24233ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) ∈ ℕ0)
25 simp3 1138 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑁 ≤ (♯‘𝑊))
26 nnz 12660 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27 nnz 12660 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
2826, 27anim12i 612 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283adant3 1132 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 zlem1lt 12695 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3129, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3225, 31mpbid 232 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) < (♯‘𝑊))
3324, 5, 323jca 1128 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
344, 33sylbi 217 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
35 addmodid 13970 . . . . . 6 (((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3634, 35syl 17 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3722, 36eqtrd 2780 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (𝑁 − 1))
3837fveq2d 6924 . . 3 (𝑁 ∈ (1...(♯‘𝑊)) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
3938adantl 481 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
4011, 39eqtrd 2780 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  ..^cfzo 13711   mod cmo 13920  chash 14379  Word cword 14562   cyclShift ccsh 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837
This theorem is referenced by:  lswcshw  14863
  Copyright terms: Public domain W3C validator