MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxn Structured version   Visualization version   GIF version

Theorem cshwidxn 14162
Description: The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxn ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))

Proof of Theorem cshwidxn
StepHypRef Expression
1 simpl 486 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzelz 12902 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 485 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 elfz1b 12971 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)))
5 simp2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
64, 5sylbi 220 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
76adantl 485 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 fzo0end 13124 . . . 4 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
97, 8syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
10 cshwidxmod 14156 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
111, 3, 9, 10syl3anc 1368 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))))
12 nncn 11633 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℂ)
1312adantl 485 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℂ)
14 1cnd 10625 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 1 ∈ ℂ)
15 nncn 11633 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → 𝑁 ∈ ℂ)
1713, 14, 163jca 1125 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
18173adant3 1129 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
194, 18sylbi 220 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝑊)) → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ))
20 subadd23 10887 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2119, 20syl 17 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) − 1) + 𝑁) = ((♯‘𝑊) + (𝑁 − 1)))
2221oveq1d 7150 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)))
23 nnm1nn0 11926 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
24233ad2ant1 1130 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) ∈ ℕ0)
25 simp3 1135 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑁 ≤ (♯‘𝑊))
26 nnz 11992 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27 nnz 11992 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
2826, 27anim12i 615 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283adant3 1129 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 zlem1lt 12022 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3129, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 ≤ (♯‘𝑊) ↔ (𝑁 − 1) < (♯‘𝑊)))
3225, 31mpbid 235 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑁 − 1) < (♯‘𝑊))
3324, 5, 323jca 1125 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
344, 33sylbi 220 . . . . . 6 (𝑁 ∈ (1...(♯‘𝑊)) → ((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)))
35 addmodid 13282 . . . . . 6 (((𝑁 − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ (𝑁 − 1) < (♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3634, 35syl 17 . . . . 5 (𝑁 ∈ (1...(♯‘𝑊)) → (((♯‘𝑊) + (𝑁 − 1)) mod (♯‘𝑊)) = (𝑁 − 1))
3722, 36eqtrd 2833 . . . 4 (𝑁 ∈ (1...(♯‘𝑊)) → ((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊)) = (𝑁 − 1))
3837fveq2d 6649 . . 3 (𝑁 ∈ (1...(♯‘𝑊)) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
3938adantl 485 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → (𝑊‘((((♯‘𝑊) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 − 1)))
4011, 39eqtrd 2833 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028   mod cmo 13232  chash 13686  Word cword 13857   cyclShift ccsh 14141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-csh 14142
This theorem is referenced by:  lswcshw  14168
  Copyright terms: Public domain W3C validator