Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1gprodd Structured version   Visualization version   GIF version

Theorem evl1gprodd 42105
Description: Polynomial evaluation builder for a finite group product of polynomials. (Contributed by metakunt, 29-Apr-2025.)
Hypotheses
Ref Expression
evl1gprodd.1 𝑂 = (eval1𝑅)
evl1gprodd.2 𝑃 = (Poly1𝑅)
evl1gprodd.3 𝑄 = (mulGrp‘𝑃)
evl1gprodd.4 𝐵 = (Base‘𝑅)
evl1gprodd.5 𝑈 = (Base‘𝑃)
evl1gprodd.6 𝑆 = (mulGrp‘𝑅)
evl1gprodd.7 (𝜑𝑅 ∈ CRing)
evl1gprodd.8 (𝜑𝑌𝐵)
evl1gprodd.9 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
evl1gprodd.10 (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
evl1gprodd (𝜑 → ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Proof of Theorem evl1gprodd
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5196 . . . . . 6 (𝑎 = ∅ → (𝑥𝑎𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
21oveq2d 7403 . . . . 5 (𝑎 = ∅ → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
32fveq2d 6862 . . . 4 (𝑎 = ∅ → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
43fveq1d 6860 . . 3 (𝑎 = ∅ → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌))
5 mpteq1 5196 . . . 4 (𝑎 = ∅ → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))
65oveq2d 7403 . . 3 (𝑎 = ∅ → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
74, 6eqeq12d 2745 . 2 (𝑎 = ∅ → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))))
8 mpteq1 5196 . . . . . 6 (𝑎 = 𝑏 → (𝑥𝑎𝑀) = (𝑥𝑏𝑀))
98oveq2d 7403 . . . . 5 (𝑎 = 𝑏 → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥𝑏𝑀)))
109fveq2d 6862 . . . 4 (𝑎 = 𝑏 → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑏𝑀))))
1110fveq1d 6860 . . 3 (𝑎 = 𝑏 → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
12 mpteq1 5196 . . . 4 (𝑎 = 𝑏 → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))
1312oveq2d 7403 . . 3 (𝑎 = 𝑏 → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))))
1411, 13eqeq12d 2745 . 2 (𝑎 = 𝑏 → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))))
15 mpteq1 5196 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑎𝑀) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))
1615oveq2d 7403 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))
1716fveq2d 6862 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))))
1817fveq1d 6860 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌))
19 mpteq1 5196 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))
2019oveq2d 7403 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
2118, 20eqeq12d 2745 . 2 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))))
22 mpteq1 5196 . . . . . 6 (𝑎 = 𝑁 → (𝑥𝑎𝑀) = (𝑥𝑁𝑀))
2322oveq2d 7403 . . . . 5 (𝑎 = 𝑁 → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥𝑁𝑀)))
2423fveq2d 6862 . . . 4 (𝑎 = 𝑁 → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑁𝑀))))
2524fveq1d 6860 . . 3 (𝑎 = 𝑁 → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌))
26 mpteq1 5196 . . . 4 (𝑎 = 𝑁 → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))
2726oveq2d 7403 . . 3 (𝑎 = 𝑁 → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
2825, 27eqeq12d 2745 . 2 (𝑎 = 𝑁 → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
29 mpt0 6660 . . . . . . 7 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
3029a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ ∅ ↦ 𝑀) = ∅)
3130oveq2d 7403 . . . . 5 (𝜑 → (𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑄 Σg ∅))
3231fveq2d 6862 . . . 4 (𝜑 → (𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘(𝑄 Σg ∅)))
3332fveq1d 6860 . . 3 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
34 mpt0 6660 . . . . . 6 (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅
3534a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅)
3635oveq2d 7403 . . . 4 (𝜑 → (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg ∅))
37 eqid 2729 . . . . . . 7 (0g𝑆) = (0g𝑆)
3837gsum0 18611 . . . . . 6 (𝑆 Σg ∅) = (0g𝑆)
3938a1i 11 . . . . 5 (𝜑 → (𝑆 Σg ∅) = (0g𝑆))
40 evl1gprodd.6 . . . . . . . . 9 𝑆 = (mulGrp‘𝑅)
41 eqid 2729 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4240, 41ringidval 20092 . . . . . . . 8 (1r𝑅) = (0g𝑆)
4342eqcomi 2738 . . . . . . 7 (0g𝑆) = (1r𝑅)
4443a1i 11 . . . . . 6 (𝜑 → (0g𝑆) = (1r𝑅))
45 evl1gprodd.1 . . . . . . . . . 10 𝑂 = (eval1𝑅)
46 evl1gprodd.2 . . . . . . . . . 10 𝑃 = (Poly1𝑅)
47 evl1gprodd.4 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
48 eqid 2729 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
49 evl1gprodd.5 . . . . . . . . . 10 𝑈 = (Base‘𝑃)
50 evl1gprodd.7 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
5150crngringd 20155 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5240ringmgp 20148 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑆 ∈ Mnd)
5351, 52syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Mnd)
54 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
5554, 37mndidcl 18676 . . . . . . . . . . . . 13 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
5653, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝑆) ∈ (Base‘𝑆))
57 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
5840, 57mgpbas 20054 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑆)
5947, 58eqtri 2752 . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
6056, 59eleqtrrdi 2839 . . . . . . . . . . 11 (𝜑 → (0g𝑆) ∈ 𝐵)
6142a1i 11 . . . . . . . . . . . 12 (𝜑 → (1r𝑅) = (0g𝑆))
6261eleq1d 2813 . . . . . . . . . . 11 (𝜑 → ((1r𝑅) ∈ 𝐵 ↔ (0g𝑆) ∈ 𝐵))
6360, 62mpbird 257 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ 𝐵)
64 evl1gprodd.8 . . . . . . . . . 10 (𝜑𝑌𝐵)
6545, 46, 47, 48, 49, 50, 63, 64evl1scad 22222 . . . . . . . . 9 (𝜑 → (((algSc‘𝑃)‘(1r𝑅)) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = (1r𝑅)))
6665simprd 495 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = (1r𝑅))
6766eqcomd 2735 . . . . . . 7 (𝜑 → (1r𝑅) = ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌))
68 eqid 2729 . . . . . . . . . . . 12 (1r𝑃) = (1r𝑃)
6946, 48, 41, 68ply1scl1 22179 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
7051, 69syl 17 . . . . . . . . . 10 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
71 evl1gprodd.3 . . . . . . . . . . . 12 𝑄 = (mulGrp‘𝑃)
7271, 68ringidval 20092 . . . . . . . . . . 11 (1r𝑃) = (0g𝑄)
7372a1i 11 . . . . . . . . . 10 (𝜑 → (1r𝑃) = (0g𝑄))
7470, 73eqtrd 2764 . . . . . . . . 9 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (0g𝑄))
7574fveq2d 6862 . . . . . . . 8 (𝜑 → (𝑂‘((algSc‘𝑃)‘(1r𝑅))) = (𝑂‘(0g𝑄)))
7675fveq1d 6860 . . . . . . 7 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = ((𝑂‘(0g𝑄))‘𝑌))
7767, 76eqtrd 2764 . . . . . 6 (𝜑 → (1r𝑅) = ((𝑂‘(0g𝑄))‘𝑌))
7844, 77eqtrd 2764 . . . . 5 (𝜑 → (0g𝑆) = ((𝑂‘(0g𝑄))‘𝑌))
79 eqid 2729 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
8079gsum0 18611 . . . . . . . . 9 (𝑄 Σg ∅) = (0g𝑄)
8180a1i 11 . . . . . . . 8 (𝜑 → (𝑄 Σg ∅) = (0g𝑄))
8281eqcomd 2735 . . . . . . 7 (𝜑 → (0g𝑄) = (𝑄 Σg ∅))
8382fveq2d 6862 . . . . . 6 (𝜑 → (𝑂‘(0g𝑄)) = (𝑂‘(𝑄 Σg ∅)))
8483fveq1d 6860 . . . . 5 (𝜑 → ((𝑂‘(0g𝑄))‘𝑌) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
8539, 78, 843eqtrd 2768 . . . 4 (𝜑 → (𝑆 Σg ∅) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
8636, 85eqtr2d 2765 . . 3 (𝜑 → ((𝑂‘(𝑄 Σg ∅))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
8733, 86eqtrd 2764 . 2 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
88 nfcv 2891 . . . . . . . . . . 11 𝑦𝑀
89 nfcsb1v 3886 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝑀
90 csbeq1a 3876 . . . . . . . . . . 11 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
9188, 89, 90cbvmpt 5209 . . . . . . . . . 10 (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)
9291a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))
9392oveq2d 7403 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)) = (𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))
9493fveq2d 6862 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))) = (𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))))
9594fveq1d 6860 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌))
96 eqid 2729 . . . . . . . . . 10 (Base‘𝑄) = (Base‘𝑄)
97 eqid 2729 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
9871, 97mgpplusg 20053 . . . . . . . . . 10 (.r𝑃) = (+g𝑄)
9946ply1crng 22083 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
10050, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
10171crngmgp 20150 . . . . . . . . . . . . 13 (𝑃 ∈ CRing → 𝑄 ∈ CMnd)
102100, 101syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ CMnd)
103102adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑄 ∈ CMnd)
104103adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑄 ∈ CMnd)
105 evl1gprodd.10 . . . . . . . . . . . 12 (𝜑𝑁 ∈ Fin)
106105ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑁 ∈ Fin)
107 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑏𝑁)
108106, 107ssfid 9212 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑏 ∈ Fin)
109 evl1gprodd.9 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
110109ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → ∀𝑥𝑁 𝑀𝑈)
111107sselda 3946 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦𝑁)
112 rspcsbela 4401 . . . . . . . . . . . . . 14 ((𝑦𝑁 ∧ ∀𝑥𝑁 𝑀𝑈) → 𝑦 / 𝑥𝑀𝑈)
113112expcom 413 . . . . . . . . . . . . 13 (∀𝑥𝑁 𝑀𝑈 → (𝑦𝑁𝑦 / 𝑥𝑀𝑈))
114113imp 406 . . . . . . . . . . . 12 ((∀𝑥𝑁 𝑀𝑈𝑦𝑁) → 𝑦 / 𝑥𝑀𝑈)
115110, 111, 114syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝑀𝑈)
11671, 49mgpbas 20054 . . . . . . . . . . . . . . . . 17 𝑈 = (Base‘𝑄)
117116eqcomi 2738 . . . . . . . . . . . . . . . 16 (Base‘𝑄) = 𝑈
118117a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑄) = 𝑈)
119118adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (Base‘𝑄) = 𝑈)
120119adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (Base‘𝑄) = 𝑈)
121120adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (Base‘𝑄) = 𝑈)
122121eleq2d 2814 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (𝑦 / 𝑥𝑀 ∈ (Base‘𝑄) ↔ 𝑦 / 𝑥𝑀𝑈))
123115, 122mpbird 257 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝑀 ∈ (Base‘𝑄))
124 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 ∈ (𝑁𝑏))
125124eldifbd 3927 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ¬ 𝑐𝑏)
126124eldifad 3926 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐𝑁)
127109ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ∀𝑥𝑁 𝑀𝑈)
128 rspcsbela 4401 . . . . . . . . . . . 12 ((𝑐𝑁 ∧ ∀𝑥𝑁 𝑀𝑈) → 𝑐 / 𝑥𝑀𝑈)
129126, 127, 128syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 / 𝑥𝑀𝑈)
130120eleq2d 2814 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑐 / 𝑥𝑀 ∈ (Base‘𝑄) ↔ 𝑐 / 𝑥𝑀𝑈))
131129, 130mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 / 𝑥𝑀 ∈ (Base‘𝑄))
132 csbeq1 3865 . . . . . . . . . 10 (𝑦 = 𝑐𝑦 / 𝑥𝑀 = 𝑐 / 𝑥𝑀)
13396, 98, 104, 108, 123, 124, 125, 131, 132gsumunsn 19890 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))
134133fveq2d 6862 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))) = (𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀)))
135134fveq1d 6860 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌))
13650ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑅 ∈ CRing)
13764ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑌𝐵)
138115ralrimiva 3125 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ∀𝑦𝑏 𝑦 / 𝑥𝑀𝑈)
139116, 104, 108, 138gsummptcl 19897 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) ∈ 𝑈)
14090equcoms 2020 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥𝑀 = 𝑦 / 𝑥𝑀)
141140eqcomd 2735 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥𝑦 / 𝑥𝑀 = 𝑀)
14289, 88, 141cbvmpt 5209 . . . . . . . . . . . . . 14 (𝑦𝑏𝑦 / 𝑥𝑀) = (𝑥𝑏𝑀)
143142a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑦𝑏𝑦 / 𝑥𝑀) = (𝑥𝑏𝑀))
144143oveq2d 7403 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) = (𝑄 Σg (𝑥𝑏𝑀)))
145144fveq2d 6862 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑏𝑀))))
146145fveq1d 6860 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
147139, 146jca 511 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) ∈ 𝑈 ∧ ((𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)))
148 eqidd 2730 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
149129, 148jca 511 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑐 / 𝑥𝑀𝑈 ∧ ((𝑂𝑐 / 𝑥𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
150 eqid 2729 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
15145, 46, 47, 49, 136, 137, 147, 149, 97, 150evl1muld 22230 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀) ∈ 𝑈 ∧ ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌))))
152151simprd 495 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
153135, 152eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
15495, 153eqtrd 2764 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
15540, 150mgpplusg 20053 . . . . . . . 8 (.r𝑅) = (+g𝑆)
156 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘𝑅) = (mulGrp‘𝑅)
157156crngmgp 20150 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
15850, 157syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
15940, 158eqeltrid 2832 . . . . . . . . . 10 (𝜑𝑆 ∈ CMnd)
160159adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑆 ∈ CMnd)
161160adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑆 ∈ CMnd)
162 csbfv12 6906 . . . . . . . . . 10 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌)
163 csbfv2g 6907 . . . . . . . . . . . 12 (𝑦 ∈ V → 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀))
164163elv 3452 . . . . . . . . . . 11 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀)
165 vex 3451 . . . . . . . . . . . 12 𝑦 ∈ V
166 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑌
167165, 166csbgfi 3882 . . . . . . . . . . 11 𝑦 / 𝑥𝑌 = 𝑌
168164, 167fveq12i 6864 . . . . . . . . . 10 (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
169162, 168eqtri 2752 . . . . . . . . 9 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
17058eqcomi 2738 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑅)
17150ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑅 ∈ CRing)
17264ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑌𝐵)
17359eqcomi 2738 . . . . . . . . . . . . 13 (Base‘𝑆) = 𝐵
174173a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (Base‘𝑆) = 𝐵)
175174eleq2d 2814 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (𝑌 ∈ (Base‘𝑆) ↔ 𝑌𝐵))
176172, 175mpbird 257 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑌 ∈ (Base‘𝑆))
17745, 46, 170, 49, 171, 176, 115fveval1fvcl 22220 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → ((𝑂𝑦 / 𝑥𝑀)‘𝑌) ∈ (Base‘𝑆))
178169, 177eqeltrid 2832 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥((𝑂𝑀)‘𝑌) ∈ (Base‘𝑆))
17945, 46, 47, 49, 136, 137, 129fveval1fvcl 22220 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
180179, 59eleqtrdi 2838 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) ∈ (Base‘𝑆))
181 nfcv 2891 . . . . . . . . 9 𝑥𝑐
182 nfcv 2891 . . . . . . . . . . 11 𝑥𝑂
183181nfcsb1 3885 . . . . . . . . . . 11 𝑥𝑐 / 𝑥𝑀
184182, 183nffv 6868 . . . . . . . . . 10 𝑥(𝑂𝑐 / 𝑥𝑀)
185184, 166nffv 6868 . . . . . . . . 9 𝑥((𝑂𝑐 / 𝑥𝑀)‘𝑌)
186 csbeq1a 3876 . . . . . . . . . . 11 (𝑥 = 𝑐𝑀 = 𝑐 / 𝑥𝑀)
187186fveq2d 6862 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝑂𝑀) = (𝑂𝑐 / 𝑥𝑀))
188187fveq1d 6860 . . . . . . . . 9 (𝑥 = 𝑐 → ((𝑂𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
189181, 185, 188csbhypf 3890 . . . . . . . 8 (𝑦 = 𝑐𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
19054, 155, 161, 108, 178, 124, 125, 180, 189gsumunsn 19890 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
191 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))))
192 nfcv 2891 . . . . . . . . . . . 12 𝑦((𝑂𝑀)‘𝑌)
193 nfcsb1v 3886 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥((𝑂𝑀)‘𝑌)
194 csbeq1a 3876 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑂𝑀)‘𝑌) = 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
195192, 193, 194cbvmpt 5209 . . . . . . . . . . 11 (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))
196195a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))
197196oveq2d 7403 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
198191, 197eqtr2d 2765 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
199198oveq1d 7402 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
200190, 199eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
201200eqcomd 2735 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)) = (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
202154, 201eqtrd 2764 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
203192, 193, 194cbvmpt 5209 . . . . . . 7 (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
204203eqcomi 2738 . . . . . 6 (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))
205204a1i 11 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))
206205oveq2d 7403 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
207202, 206eqtrd 2764 . . 3 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
208207ex 412 . 2 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))))
2097, 14, 21, 28, 87, 208, 105findcard2d 9130 1 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  csb 3862  cdif 3911  cun 3912  wss 3914  c0 4296  {csn 4589  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918  Basecbs 17179  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  algSccascl 21761  Poly1cpl1 22061  eval1ce1 22201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-ply1 22066  df-evl1 22203
This theorem is referenced by:  aks6d1c5lem2  42126
  Copyright terms: Public domain W3C validator