Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1gprodd Structured version   Visualization version   GIF version

Theorem evl1gprodd 42077
Description: Polynomial evaluation builder for a finite group product of polynomials. (Contributed by metakunt, 29-Apr-2025.)
Hypotheses
Ref Expression
evl1gprodd.1 𝑂 = (eval1𝑅)
evl1gprodd.2 𝑃 = (Poly1𝑅)
evl1gprodd.3 𝑄 = (mulGrp‘𝑃)
evl1gprodd.4 𝐵 = (Base‘𝑅)
evl1gprodd.5 𝑈 = (Base‘𝑃)
evl1gprodd.6 𝑆 = (mulGrp‘𝑅)
evl1gprodd.7 (𝜑𝑅 ∈ CRing)
evl1gprodd.8 (𝜑𝑌𝐵)
evl1gprodd.9 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
evl1gprodd.10 (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
evl1gprodd (𝜑 → ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Proof of Theorem evl1gprodd
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5215 . . . . . 6 (𝑎 = ∅ → (𝑥𝑎𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
21oveq2d 7429 . . . . 5 (𝑎 = ∅ → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
32fveq2d 6890 . . . 4 (𝑎 = ∅ → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
43fveq1d 6888 . . 3 (𝑎 = ∅ → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌))
5 mpteq1 5215 . . . 4 (𝑎 = ∅ → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))
65oveq2d 7429 . . 3 (𝑎 = ∅ → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
74, 6eqeq12d 2750 . 2 (𝑎 = ∅ → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))))
8 mpteq1 5215 . . . . . 6 (𝑎 = 𝑏 → (𝑥𝑎𝑀) = (𝑥𝑏𝑀))
98oveq2d 7429 . . . . 5 (𝑎 = 𝑏 → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥𝑏𝑀)))
109fveq2d 6890 . . . 4 (𝑎 = 𝑏 → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑏𝑀))))
1110fveq1d 6888 . . 3 (𝑎 = 𝑏 → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
12 mpteq1 5215 . . . 4 (𝑎 = 𝑏 → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))
1312oveq2d 7429 . . 3 (𝑎 = 𝑏 → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))))
1411, 13eqeq12d 2750 . 2 (𝑎 = 𝑏 → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))))
15 mpteq1 5215 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑎𝑀) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))
1615oveq2d 7429 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))
1716fveq2d 6890 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))))
1817fveq1d 6888 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌))
19 mpteq1 5215 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))
2019oveq2d 7429 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
2118, 20eqeq12d 2750 . 2 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))))
22 mpteq1 5215 . . . . . 6 (𝑎 = 𝑁 → (𝑥𝑎𝑀) = (𝑥𝑁𝑀))
2322oveq2d 7429 . . . . 5 (𝑎 = 𝑁 → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥𝑁𝑀)))
2423fveq2d 6890 . . . 4 (𝑎 = 𝑁 → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑁𝑀))))
2524fveq1d 6888 . . 3 (𝑎 = 𝑁 → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌))
26 mpteq1 5215 . . . 4 (𝑎 = 𝑁 → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))
2726oveq2d 7429 . . 3 (𝑎 = 𝑁 → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
2825, 27eqeq12d 2750 . 2 (𝑎 = 𝑁 → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
29 mpt0 6690 . . . . . . 7 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
3029a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ ∅ ↦ 𝑀) = ∅)
3130oveq2d 7429 . . . . 5 (𝜑 → (𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑄 Σg ∅))
3231fveq2d 6890 . . . 4 (𝜑 → (𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘(𝑄 Σg ∅)))
3332fveq1d 6888 . . 3 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
34 mpt0 6690 . . . . . 6 (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅
3534a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅)
3635oveq2d 7429 . . . 4 (𝜑 → (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg ∅))
37 eqid 2734 . . . . . . 7 (0g𝑆) = (0g𝑆)
3837gsum0 18666 . . . . . 6 (𝑆 Σg ∅) = (0g𝑆)
3938a1i 11 . . . . 5 (𝜑 → (𝑆 Σg ∅) = (0g𝑆))
40 evl1gprodd.6 . . . . . . . . 9 𝑆 = (mulGrp‘𝑅)
41 eqid 2734 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4240, 41ringidval 20148 . . . . . . . 8 (1r𝑅) = (0g𝑆)
4342eqcomi 2743 . . . . . . 7 (0g𝑆) = (1r𝑅)
4443a1i 11 . . . . . 6 (𝜑 → (0g𝑆) = (1r𝑅))
45 evl1gprodd.1 . . . . . . . . . 10 𝑂 = (eval1𝑅)
46 evl1gprodd.2 . . . . . . . . . 10 𝑃 = (Poly1𝑅)
47 evl1gprodd.4 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
48 eqid 2734 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
49 evl1gprodd.5 . . . . . . . . . 10 𝑈 = (Base‘𝑃)
50 evl1gprodd.7 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
5150crngringd 20211 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5240ringmgp 20204 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑆 ∈ Mnd)
5351, 52syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Mnd)
54 eqid 2734 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
5554, 37mndidcl 18731 . . . . . . . . . . . . 13 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
5653, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝑆) ∈ (Base‘𝑆))
57 eqid 2734 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
5840, 57mgpbas 20110 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑆)
5947, 58eqtri 2757 . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
6056, 59eleqtrrdi 2844 . . . . . . . . . . 11 (𝜑 → (0g𝑆) ∈ 𝐵)
6142a1i 11 . . . . . . . . . . . 12 (𝜑 → (1r𝑅) = (0g𝑆))
6261eleq1d 2818 . . . . . . . . . . 11 (𝜑 → ((1r𝑅) ∈ 𝐵 ↔ (0g𝑆) ∈ 𝐵))
6360, 62mpbird 257 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ 𝐵)
64 evl1gprodd.8 . . . . . . . . . 10 (𝜑𝑌𝐵)
6545, 46, 47, 48, 49, 50, 63, 64evl1scad 22287 . . . . . . . . 9 (𝜑 → (((algSc‘𝑃)‘(1r𝑅)) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = (1r𝑅)))
6665simprd 495 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = (1r𝑅))
6766eqcomd 2740 . . . . . . 7 (𝜑 → (1r𝑅) = ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌))
68 eqid 2734 . . . . . . . . . . . 12 (1r𝑃) = (1r𝑃)
6946, 48, 41, 68ply1scl1 22244 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
7051, 69syl 17 . . . . . . . . . 10 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
71 evl1gprodd.3 . . . . . . . . . . . 12 𝑄 = (mulGrp‘𝑃)
7271, 68ringidval 20148 . . . . . . . . . . 11 (1r𝑃) = (0g𝑄)
7372a1i 11 . . . . . . . . . 10 (𝜑 → (1r𝑃) = (0g𝑄))
7470, 73eqtrd 2769 . . . . . . . . 9 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (0g𝑄))
7574fveq2d 6890 . . . . . . . 8 (𝜑 → (𝑂‘((algSc‘𝑃)‘(1r𝑅))) = (𝑂‘(0g𝑄)))
7675fveq1d 6888 . . . . . . 7 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = ((𝑂‘(0g𝑄))‘𝑌))
7767, 76eqtrd 2769 . . . . . 6 (𝜑 → (1r𝑅) = ((𝑂‘(0g𝑄))‘𝑌))
7844, 77eqtrd 2769 . . . . 5 (𝜑 → (0g𝑆) = ((𝑂‘(0g𝑄))‘𝑌))
79 eqid 2734 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
8079gsum0 18666 . . . . . . . . 9 (𝑄 Σg ∅) = (0g𝑄)
8180a1i 11 . . . . . . . 8 (𝜑 → (𝑄 Σg ∅) = (0g𝑄))
8281eqcomd 2740 . . . . . . 7 (𝜑 → (0g𝑄) = (𝑄 Σg ∅))
8382fveq2d 6890 . . . . . 6 (𝜑 → (𝑂‘(0g𝑄)) = (𝑂‘(𝑄 Σg ∅)))
8483fveq1d 6888 . . . . 5 (𝜑 → ((𝑂‘(0g𝑄))‘𝑌) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
8539, 78, 843eqtrd 2773 . . . 4 (𝜑 → (𝑆 Σg ∅) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
8636, 85eqtr2d 2770 . . 3 (𝜑 → ((𝑂‘(𝑄 Σg ∅))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
8733, 86eqtrd 2769 . 2 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
88 nfcv 2897 . . . . . . . . . . 11 𝑦𝑀
89 nfcsb1v 3903 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝑀
90 csbeq1a 3893 . . . . . . . . . . 11 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
9188, 89, 90cbvmpt 5233 . . . . . . . . . 10 (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)
9291a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))
9392oveq2d 7429 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)) = (𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))
9493fveq2d 6890 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))) = (𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))))
9594fveq1d 6888 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌))
96 eqid 2734 . . . . . . . . . 10 (Base‘𝑄) = (Base‘𝑄)
97 eqid 2734 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
9871, 97mgpplusg 20109 . . . . . . . . . 10 (.r𝑃) = (+g𝑄)
9946ply1crng 22148 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
10050, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
10171crngmgp 20206 . . . . . . . . . . . . 13 (𝑃 ∈ CRing → 𝑄 ∈ CMnd)
102100, 101syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ CMnd)
103102adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑄 ∈ CMnd)
104103adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑄 ∈ CMnd)
105 evl1gprodd.10 . . . . . . . . . . . 12 (𝜑𝑁 ∈ Fin)
106105ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑁 ∈ Fin)
107 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑏𝑁)
108106, 107ssfid 9283 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑏 ∈ Fin)
109 evl1gprodd.9 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
110109ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → ∀𝑥𝑁 𝑀𝑈)
111107sselda 3963 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦𝑁)
112 rspcsbela 4418 . . . . . . . . . . . . . 14 ((𝑦𝑁 ∧ ∀𝑥𝑁 𝑀𝑈) → 𝑦 / 𝑥𝑀𝑈)
113112expcom 413 . . . . . . . . . . . . 13 (∀𝑥𝑁 𝑀𝑈 → (𝑦𝑁𝑦 / 𝑥𝑀𝑈))
114113imp 406 . . . . . . . . . . . 12 ((∀𝑥𝑁 𝑀𝑈𝑦𝑁) → 𝑦 / 𝑥𝑀𝑈)
115110, 111, 114syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝑀𝑈)
11671, 49mgpbas 20110 . . . . . . . . . . . . . . . . 17 𝑈 = (Base‘𝑄)
117116eqcomi 2743 . . . . . . . . . . . . . . . 16 (Base‘𝑄) = 𝑈
118117a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑄) = 𝑈)
119118adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (Base‘𝑄) = 𝑈)
120119adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (Base‘𝑄) = 𝑈)
121120adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (Base‘𝑄) = 𝑈)
122121eleq2d 2819 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (𝑦 / 𝑥𝑀 ∈ (Base‘𝑄) ↔ 𝑦 / 𝑥𝑀𝑈))
123115, 122mpbird 257 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝑀 ∈ (Base‘𝑄))
124 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 ∈ (𝑁𝑏))
125124eldifbd 3944 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ¬ 𝑐𝑏)
126124eldifad 3943 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐𝑁)
127109ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ∀𝑥𝑁 𝑀𝑈)
128 rspcsbela 4418 . . . . . . . . . . . 12 ((𝑐𝑁 ∧ ∀𝑥𝑁 𝑀𝑈) → 𝑐 / 𝑥𝑀𝑈)
129126, 127, 128syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 / 𝑥𝑀𝑈)
130120eleq2d 2819 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑐 / 𝑥𝑀 ∈ (Base‘𝑄) ↔ 𝑐 / 𝑥𝑀𝑈))
131129, 130mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 / 𝑥𝑀 ∈ (Base‘𝑄))
132 csbeq1 3882 . . . . . . . . . 10 (𝑦 = 𝑐𝑦 / 𝑥𝑀 = 𝑐 / 𝑥𝑀)
13396, 98, 104, 108, 123, 124, 125, 131, 132gsumunsn 19946 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))
134133fveq2d 6890 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))) = (𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀)))
135134fveq1d 6888 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌))
13650ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑅 ∈ CRing)
13764ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑌𝐵)
138115ralrimiva 3133 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ∀𝑦𝑏 𝑦 / 𝑥𝑀𝑈)
139116, 104, 108, 138gsummptcl 19953 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) ∈ 𝑈)
14090equcoms 2018 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥𝑀 = 𝑦 / 𝑥𝑀)
141140eqcomd 2740 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥𝑦 / 𝑥𝑀 = 𝑀)
14289, 88, 141cbvmpt 5233 . . . . . . . . . . . . . 14 (𝑦𝑏𝑦 / 𝑥𝑀) = (𝑥𝑏𝑀)
143142a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑦𝑏𝑦 / 𝑥𝑀) = (𝑥𝑏𝑀))
144143oveq2d 7429 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) = (𝑄 Σg (𝑥𝑏𝑀)))
145144fveq2d 6890 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑏𝑀))))
146145fveq1d 6888 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
147139, 146jca 511 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) ∈ 𝑈 ∧ ((𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)))
148 eqidd 2735 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
149129, 148jca 511 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑐 / 𝑥𝑀𝑈 ∧ ((𝑂𝑐 / 𝑥𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
150 eqid 2734 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
15145, 46, 47, 49, 136, 137, 147, 149, 97, 150evl1muld 22295 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀) ∈ 𝑈 ∧ ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌))))
152151simprd 495 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
153135, 152eqtrd 2769 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
15495, 153eqtrd 2769 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
15540, 150mgpplusg 20109 . . . . . . . 8 (.r𝑅) = (+g𝑆)
156 eqid 2734 . . . . . . . . . . . . 13 (mulGrp‘𝑅) = (mulGrp‘𝑅)
157156crngmgp 20206 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
15850, 157syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
15940, 158eqeltrid 2837 . . . . . . . . . 10 (𝜑𝑆 ∈ CMnd)
160159adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑆 ∈ CMnd)
161160adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑆 ∈ CMnd)
162 csbfv12 6934 . . . . . . . . . 10 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌)
163 csbfv2g 6935 . . . . . . . . . . . 12 (𝑦 ∈ V → 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀))
164163elv 3468 . . . . . . . . . . 11 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀)
165 vex 3467 . . . . . . . . . . . 12 𝑦 ∈ V
166 nfcv 2897 . . . . . . . . . . . 12 𝑥𝑌
167165, 166csbgfi 3899 . . . . . . . . . . 11 𝑦 / 𝑥𝑌 = 𝑌
168164, 167fveq12i 6892 . . . . . . . . . 10 (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
169162, 168eqtri 2757 . . . . . . . . 9 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
17058eqcomi 2743 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑅)
17150ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑅 ∈ CRing)
17264ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑌𝐵)
17359eqcomi 2743 . . . . . . . . . . . . 13 (Base‘𝑆) = 𝐵
174173a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (Base‘𝑆) = 𝐵)
175174eleq2d 2819 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (𝑌 ∈ (Base‘𝑆) ↔ 𝑌𝐵))
176172, 175mpbird 257 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑌 ∈ (Base‘𝑆))
17745, 46, 170, 49, 171, 176, 115fveval1fvcl 22285 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → ((𝑂𝑦 / 𝑥𝑀)‘𝑌) ∈ (Base‘𝑆))
178169, 177eqeltrid 2837 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥((𝑂𝑀)‘𝑌) ∈ (Base‘𝑆))
17945, 46, 47, 49, 136, 137, 129fveval1fvcl 22285 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
180179, 59eleqtrdi 2843 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) ∈ (Base‘𝑆))
181 nfcv 2897 . . . . . . . . 9 𝑥𝑐
182 nfcv 2897 . . . . . . . . . . 11 𝑥𝑂
183181nfcsb1 3902 . . . . . . . . . . 11 𝑥𝑐 / 𝑥𝑀
184182, 183nffv 6896 . . . . . . . . . 10 𝑥(𝑂𝑐 / 𝑥𝑀)
185184, 166nffv 6896 . . . . . . . . 9 𝑥((𝑂𝑐 / 𝑥𝑀)‘𝑌)
186 csbeq1a 3893 . . . . . . . . . . 11 (𝑥 = 𝑐𝑀 = 𝑐 / 𝑥𝑀)
187186fveq2d 6890 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝑂𝑀) = (𝑂𝑐 / 𝑥𝑀))
188187fveq1d 6888 . . . . . . . . 9 (𝑥 = 𝑐 → ((𝑂𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
189181, 185, 188csbhypf 3907 . . . . . . . 8 (𝑦 = 𝑐𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
19054, 155, 161, 108, 178, 124, 125, 180, 189gsumunsn 19946 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
191 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))))
192 nfcv 2897 . . . . . . . . . . . 12 𝑦((𝑂𝑀)‘𝑌)
193 nfcsb1v 3903 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥((𝑂𝑀)‘𝑌)
194 csbeq1a 3893 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑂𝑀)‘𝑌) = 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
195192, 193, 194cbvmpt 5233 . . . . . . . . . . 11 (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))
196195a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))
197196oveq2d 7429 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
198191, 197eqtr2d 2770 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
199198oveq1d 7428 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
200190, 199eqtrd 2769 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
201200eqcomd 2740 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)) = (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
202154, 201eqtrd 2769 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
203192, 193, 194cbvmpt 5233 . . . . . . 7 (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
204203eqcomi 2743 . . . . . 6 (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))
205204a1i 11 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))
206205oveq2d 7429 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
207202, 206eqtrd 2769 . . 3 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
208207ex 412 . 2 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))))
2097, 14, 21, 28, 87, 208, 105findcard2d 9188 1 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  csb 3879  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606  cmpt 5205  cfv 6541  (class class class)co 7413  Fincfn 8967  Basecbs 17229  .rcmulr 17274  0gc0g 17455   Σg cgsu 17456  Mndcmnd 18716  CMndccmn 19766  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199  algSccascl 21826  Poly1cpl1 22126  eval1ce1 22266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14352  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-ghm 19200  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-rhm 20440  df-subrng 20514  df-subrg 20538  df-lmod 20828  df-lss 20898  df-lsp 20938  df-assa 21827  df-asp 21828  df-ascl 21829  df-psr 21883  df-mvr 21884  df-mpl 21885  df-opsr 21887  df-evls 22046  df-evl 22047  df-psr1 22129  df-ply1 22131  df-evl1 22268
This theorem is referenced by:  aks6d1c5lem2  42098
  Copyright terms: Public domain W3C validator