Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evl1gprodd Structured version   Visualization version   GIF version

Theorem evl1gprodd 42119
Description: Polynomial evaluation builder for a finite group product of polynomials. (Contributed by metakunt, 29-Apr-2025.)
Hypotheses
Ref Expression
evl1gprodd.1 𝑂 = (eval1𝑅)
evl1gprodd.2 𝑃 = (Poly1𝑅)
evl1gprodd.3 𝑄 = (mulGrp‘𝑃)
evl1gprodd.4 𝐵 = (Base‘𝑅)
evl1gprodd.5 𝑈 = (Base‘𝑃)
evl1gprodd.6 𝑆 = (mulGrp‘𝑅)
evl1gprodd.7 (𝜑𝑅 ∈ CRing)
evl1gprodd.8 (𝜑𝑌𝐵)
evl1gprodd.9 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
evl1gprodd.10 (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
evl1gprodd (𝜑 → ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Proof of Theorem evl1gprodd
Dummy variables 𝑎 𝑏 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5234 . . . . . 6 (𝑎 = ∅ → (𝑥𝑎𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
21oveq2d 7448 . . . . 5 (𝑎 = ∅ → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
32fveq2d 6909 . . . 4 (𝑎 = ∅ → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
43fveq1d 6907 . . 3 (𝑎 = ∅ → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌))
5 mpteq1 5234 . . . 4 (𝑎 = ∅ → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))
65oveq2d 7448 . . 3 (𝑎 = ∅ → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
74, 6eqeq12d 2752 . 2 (𝑎 = ∅ → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))))
8 mpteq1 5234 . . . . . 6 (𝑎 = 𝑏 → (𝑥𝑎𝑀) = (𝑥𝑏𝑀))
98oveq2d 7448 . . . . 5 (𝑎 = 𝑏 → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥𝑏𝑀)))
109fveq2d 6909 . . . 4 (𝑎 = 𝑏 → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑏𝑀))))
1110fveq1d 6907 . . 3 (𝑎 = 𝑏 → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
12 mpteq1 5234 . . . 4 (𝑎 = 𝑏 → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))
1312oveq2d 7448 . . 3 (𝑎 = 𝑏 → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))))
1411, 13eqeq12d 2752 . 2 (𝑎 = 𝑏 → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))))
15 mpteq1 5234 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑎𝑀) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))
1615oveq2d 7448 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))
1716fveq2d 6909 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))))
1817fveq1d 6907 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌))
19 mpteq1 5234 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))
2019oveq2d 7448 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
2118, 20eqeq12d 2752 . 2 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))))
22 mpteq1 5234 . . . . . 6 (𝑎 = 𝑁 → (𝑥𝑎𝑀) = (𝑥𝑁𝑀))
2322oveq2d 7448 . . . . 5 (𝑎 = 𝑁 → (𝑄 Σg (𝑥𝑎𝑀)) = (𝑄 Σg (𝑥𝑁𝑀)))
2423fveq2d 6909 . . . 4 (𝑎 = 𝑁 → (𝑂‘(𝑄 Σg (𝑥𝑎𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑁𝑀))))
2524fveq1d 6907 . . 3 (𝑎 = 𝑁 → ((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌))
26 mpteq1 5234 . . . 4 (𝑎 = 𝑁 → (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))
2726oveq2d 7448 . . 3 (𝑎 = 𝑁 → (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
2825, 27eqeq12d 2752 . 2 (𝑎 = 𝑁 → (((𝑂‘(𝑄 Σg (𝑥𝑎𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑎 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
29 mpt0 6709 . . . . . . 7 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
3029a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ ∅ ↦ 𝑀) = ∅)
3130oveq2d 7448 . . . . 5 (𝜑 → (𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑄 Σg ∅))
3231fveq2d 6909 . . . 4 (𝜑 → (𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘(𝑄 Σg ∅)))
3332fveq1d 6907 . . 3 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
34 mpt0 6709 . . . . . 6 (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅
3534a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅)
3635oveq2d 7448 . . . 4 (𝜑 → (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg ∅))
37 eqid 2736 . . . . . . 7 (0g𝑆) = (0g𝑆)
3837gsum0 18698 . . . . . 6 (𝑆 Σg ∅) = (0g𝑆)
3938a1i 11 . . . . 5 (𝜑 → (𝑆 Σg ∅) = (0g𝑆))
40 evl1gprodd.6 . . . . . . . . 9 𝑆 = (mulGrp‘𝑅)
41 eqid 2736 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4240, 41ringidval 20181 . . . . . . . 8 (1r𝑅) = (0g𝑆)
4342eqcomi 2745 . . . . . . 7 (0g𝑆) = (1r𝑅)
4443a1i 11 . . . . . 6 (𝜑 → (0g𝑆) = (1r𝑅))
45 evl1gprodd.1 . . . . . . . . . 10 𝑂 = (eval1𝑅)
46 evl1gprodd.2 . . . . . . . . . 10 𝑃 = (Poly1𝑅)
47 evl1gprodd.4 . . . . . . . . . 10 𝐵 = (Base‘𝑅)
48 eqid 2736 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
49 evl1gprodd.5 . . . . . . . . . 10 𝑈 = (Base‘𝑃)
50 evl1gprodd.7 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
5150crngringd 20244 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5240ringmgp 20237 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑆 ∈ Mnd)
5351, 52syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Mnd)
54 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
5554, 37mndidcl 18763 . . . . . . . . . . . . 13 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
5653, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝑆) ∈ (Base‘𝑆))
57 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
5840, 57mgpbas 20143 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑆)
5947, 58eqtri 2764 . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
6056, 59eleqtrrdi 2851 . . . . . . . . . . 11 (𝜑 → (0g𝑆) ∈ 𝐵)
6142a1i 11 . . . . . . . . . . . 12 (𝜑 → (1r𝑅) = (0g𝑆))
6261eleq1d 2825 . . . . . . . . . . 11 (𝜑 → ((1r𝑅) ∈ 𝐵 ↔ (0g𝑆) ∈ 𝐵))
6360, 62mpbird 257 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ 𝐵)
64 evl1gprodd.8 . . . . . . . . . 10 (𝜑𝑌𝐵)
6545, 46, 47, 48, 49, 50, 63, 64evl1scad 22340 . . . . . . . . 9 (𝜑 → (((algSc‘𝑃)‘(1r𝑅)) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = (1r𝑅)))
6665simprd 495 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = (1r𝑅))
6766eqcomd 2742 . . . . . . 7 (𝜑 → (1r𝑅) = ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌))
68 eqid 2736 . . . . . . . . . . . 12 (1r𝑃) = (1r𝑃)
6946, 48, 41, 68ply1scl1 22297 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
7051, 69syl 17 . . . . . . . . . 10 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
71 evl1gprodd.3 . . . . . . . . . . . 12 𝑄 = (mulGrp‘𝑃)
7271, 68ringidval 20181 . . . . . . . . . . 11 (1r𝑃) = (0g𝑄)
7372a1i 11 . . . . . . . . . 10 (𝜑 → (1r𝑃) = (0g𝑄))
7470, 73eqtrd 2776 . . . . . . . . 9 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (0g𝑄))
7574fveq2d 6909 . . . . . . . 8 (𝜑 → (𝑂‘((algSc‘𝑃)‘(1r𝑅))) = (𝑂‘(0g𝑄)))
7675fveq1d 6907 . . . . . . 7 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝑌) = ((𝑂‘(0g𝑄))‘𝑌))
7767, 76eqtrd 2776 . . . . . 6 (𝜑 → (1r𝑅) = ((𝑂‘(0g𝑄))‘𝑌))
7844, 77eqtrd 2776 . . . . 5 (𝜑 → (0g𝑆) = ((𝑂‘(0g𝑄))‘𝑌))
79 eqid 2736 . . . . . . . . . 10 (0g𝑄) = (0g𝑄)
8079gsum0 18698 . . . . . . . . 9 (𝑄 Σg ∅) = (0g𝑄)
8180a1i 11 . . . . . . . 8 (𝜑 → (𝑄 Σg ∅) = (0g𝑄))
8281eqcomd 2742 . . . . . . 7 (𝜑 → (0g𝑄) = (𝑄 Σg ∅))
8382fveq2d 6909 . . . . . 6 (𝜑 → (𝑂‘(0g𝑄)) = (𝑂‘(𝑄 Σg ∅)))
8483fveq1d 6907 . . . . 5 (𝜑 → ((𝑂‘(0g𝑄))‘𝑌) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
8539, 78, 843eqtrd 2780 . . . 4 (𝜑 → (𝑆 Σg ∅) = ((𝑂‘(𝑄 Σg ∅))‘𝑌))
8636, 85eqtr2d 2777 . . 3 (𝜑 → ((𝑂‘(𝑄 Σg ∅))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
8733, 86eqtrd 2776 . 2 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
88 nfcv 2904 . . . . . . . . . . 11 𝑦𝑀
89 nfcsb1v 3922 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝑀
90 csbeq1a 3912 . . . . . . . . . . 11 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
9188, 89, 90cbvmpt 5252 . . . . . . . . . 10 (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)
9291a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))
9392oveq2d 7448 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)) = (𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))
9493fveq2d 6909 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀))) = (𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))))
9594fveq1d 6907 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌))
96 eqid 2736 . . . . . . . . . 10 (Base‘𝑄) = (Base‘𝑄)
97 eqid 2736 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
9871, 97mgpplusg 20142 . . . . . . . . . 10 (.r𝑃) = (+g𝑄)
9946ply1crng 22201 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
10050, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ CRing)
10171crngmgp 20239 . . . . . . . . . . . . 13 (𝑃 ∈ CRing → 𝑄 ∈ CMnd)
102100, 101syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ CMnd)
103102adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑄 ∈ CMnd)
104103adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑄 ∈ CMnd)
105 evl1gprodd.10 . . . . . . . . . . . 12 (𝜑𝑁 ∈ Fin)
106105ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑁 ∈ Fin)
107 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑏𝑁)
108106, 107ssfid 9302 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑏 ∈ Fin)
109 evl1gprodd.9 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
110109ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → ∀𝑥𝑁 𝑀𝑈)
111107sselda 3982 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦𝑁)
112 rspcsbela 4437 . . . . . . . . . . . . . 14 ((𝑦𝑁 ∧ ∀𝑥𝑁 𝑀𝑈) → 𝑦 / 𝑥𝑀𝑈)
113112expcom 413 . . . . . . . . . . . . 13 (∀𝑥𝑁 𝑀𝑈 → (𝑦𝑁𝑦 / 𝑥𝑀𝑈))
114113imp 406 . . . . . . . . . . . 12 ((∀𝑥𝑁 𝑀𝑈𝑦𝑁) → 𝑦 / 𝑥𝑀𝑈)
115110, 111, 114syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝑀𝑈)
11671, 49mgpbas 20143 . . . . . . . . . . . . . . . . 17 𝑈 = (Base‘𝑄)
117116eqcomi 2745 . . . . . . . . . . . . . . . 16 (Base‘𝑄) = 𝑈
118117a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑄) = 𝑈)
119118adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (Base‘𝑄) = 𝑈)
120119adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (Base‘𝑄) = 𝑈)
121120adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (Base‘𝑄) = 𝑈)
122121eleq2d 2826 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (𝑦 / 𝑥𝑀 ∈ (Base‘𝑄) ↔ 𝑦 / 𝑥𝑀𝑈))
123115, 122mpbird 257 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥𝑀 ∈ (Base‘𝑄))
124 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 ∈ (𝑁𝑏))
125124eldifbd 3963 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ¬ 𝑐𝑏)
126124eldifad 3962 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐𝑁)
127109ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ∀𝑥𝑁 𝑀𝑈)
128 rspcsbela 4437 . . . . . . . . . . . 12 ((𝑐𝑁 ∧ ∀𝑥𝑁 𝑀𝑈) → 𝑐 / 𝑥𝑀𝑈)
129126, 127, 128syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 / 𝑥𝑀𝑈)
130120eleq2d 2826 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑐 / 𝑥𝑀 ∈ (Base‘𝑄) ↔ 𝑐 / 𝑥𝑀𝑈))
131129, 130mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑐 / 𝑥𝑀 ∈ (Base‘𝑄))
132 csbeq1 3901 . . . . . . . . . 10 (𝑦 = 𝑐𝑦 / 𝑥𝑀 = 𝑐 / 𝑥𝑀)
13396, 98, 104, 108, 123, 124, 125, 131, 132gsumunsn 19979 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))
134133fveq2d 6909 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀))) = (𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀)))
135134fveq1d 6907 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌))
13650ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑅 ∈ CRing)
13764ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑌𝐵)
138115ralrimiva 3145 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ∀𝑦𝑏 𝑦 / 𝑥𝑀𝑈)
139116, 104, 108, 138gsummptcl 19986 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) ∈ 𝑈)
14090equcoms 2018 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥𝑀 = 𝑦 / 𝑥𝑀)
141140eqcomd 2742 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥𝑦 / 𝑥𝑀 = 𝑀)
14289, 88, 141cbvmpt 5252 . . . . . . . . . . . . . 14 (𝑦𝑏𝑦 / 𝑥𝑀) = (𝑥𝑏𝑀)
143142a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑦𝑏𝑦 / 𝑥𝑀) = (𝑥𝑏𝑀))
144143oveq2d 7448 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) = (𝑄 Σg (𝑥𝑏𝑀)))
145144fveq2d 6909 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))) = (𝑂‘(𝑄 Σg (𝑥𝑏𝑀))))
146145fveq1d 6907 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
147139, 146jca 511 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)) ∈ 𝑈 ∧ ((𝑂‘(𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀)))‘𝑌) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)))
148 eqidd 2737 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
149129, 148jca 511 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑐 / 𝑥𝑀𝑈 ∧ ((𝑂𝑐 / 𝑥𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
150 eqid 2736 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
15145, 46, 47, 49, 136, 137, 147, 149, 97, 150evl1muld 22348 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀) ∈ 𝑈 ∧ ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌))))
152151simprd 495 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘((𝑄 Σg (𝑦𝑏𝑦 / 𝑥𝑀))(.r𝑃)𝑐 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
153135, 152eqtrd 2776 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥𝑀)))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
15495, 153eqtrd 2776 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
15540, 150mgpplusg 20142 . . . . . . . 8 (.r𝑅) = (+g𝑆)
156 eqid 2736 . . . . . . . . . . . . 13 (mulGrp‘𝑅) = (mulGrp‘𝑅)
157156crngmgp 20239 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
15850, 157syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
15940, 158eqeltrid 2844 . . . . . . . . . 10 (𝜑𝑆 ∈ CMnd)
160159adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → 𝑆 ∈ CMnd)
161160adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → 𝑆 ∈ CMnd)
162 csbfv12 6953 . . . . . . . . . 10 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌)
163 csbfv2g 6954 . . . . . . . . . . . 12 (𝑦 ∈ V → 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀))
164163elv 3484 . . . . . . . . . . 11 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀)
165 vex 3483 . . . . . . . . . . . 12 𝑦 ∈ V
166 nfcv 2904 . . . . . . . . . . . 12 𝑥𝑌
167165, 166csbgfi 3918 . . . . . . . . . . 11 𝑦 / 𝑥𝑌 = 𝑌
168164, 167fveq12i 6911 . . . . . . . . . 10 (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
169162, 168eqtri 2764 . . . . . . . . 9 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
17058eqcomi 2745 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑅)
17150ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑅 ∈ CRing)
17264ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑌𝐵)
17359eqcomi 2745 . . . . . . . . . . . . 13 (Base‘𝑆) = 𝐵
174173a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (Base‘𝑆) = 𝐵)
175174eleq2d 2826 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → (𝑌 ∈ (Base‘𝑆) ↔ 𝑌𝐵))
176172, 175mpbird 257 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑌 ∈ (Base‘𝑆))
17745, 46, 170, 49, 171, 176, 115fveval1fvcl 22338 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → ((𝑂𝑦 / 𝑥𝑀)‘𝑌) ∈ (Base‘𝑆))
178169, 177eqeltrid 2844 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) ∧ 𝑦𝑏) → 𝑦 / 𝑥((𝑂𝑀)‘𝑌) ∈ (Base‘𝑆))
17945, 46, 47, 49, 136, 137, 129fveval1fvcl 22338 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
180179, 59eleqtrdi 2850 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂𝑐 / 𝑥𝑀)‘𝑌) ∈ (Base‘𝑆))
181 nfcv 2904 . . . . . . . . 9 𝑥𝑐
182 nfcv 2904 . . . . . . . . . . 11 𝑥𝑂
183181nfcsb1 3921 . . . . . . . . . . 11 𝑥𝑐 / 𝑥𝑀
184182, 183nffv 6915 . . . . . . . . . 10 𝑥(𝑂𝑐 / 𝑥𝑀)
185184, 166nffv 6915 . . . . . . . . 9 𝑥((𝑂𝑐 / 𝑥𝑀)‘𝑌)
186 csbeq1a 3912 . . . . . . . . . . 11 (𝑥 = 𝑐𝑀 = 𝑐 / 𝑥𝑀)
187186fveq2d 6909 . . . . . . . . . 10 (𝑥 = 𝑐 → (𝑂𝑀) = (𝑂𝑐 / 𝑥𝑀))
188187fveq1d 6907 . . . . . . . . 9 (𝑥 = 𝑐 → ((𝑂𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
189181, 185, 188csbhypf 3926 . . . . . . . 8 (𝑦 = 𝑐𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑐 / 𝑥𝑀)‘𝑌))
19054, 155, 161, 108, 178, 124, 125, 180, 189gsumunsn 19979 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
191 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))))
192 nfcv 2904 . . . . . . . . . . . 12 𝑦((𝑂𝑀)‘𝑌)
193 nfcsb1v 3922 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥((𝑂𝑀)‘𝑌)
194 csbeq1a 3912 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑂𝑀)‘𝑌) = 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
195192, 193, 194cbvmpt 5252 . . . . . . . . . . 11 (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))
196195a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))
197196oveq2d 7448 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
198191, 197eqtr2d 2777 . . . . . . . 8 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌))
199198oveq1d 7447 . . . . . . 7 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑆 Σg (𝑦𝑏𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
200190, 199eqtrd 2776 . . . . . 6 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)))
201200eqcomd 2742 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌)(.r𝑅)((𝑂𝑐 / 𝑥𝑀)‘𝑌)) = (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
202154, 201eqtrd 2776 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))))
203192, 193, 194cbvmpt 5252 . . . . . . 7 (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)) = (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
204203eqcomi 2745 . . . . . 6 (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))
205204a1i 11 . . . . 5 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))
206205oveq2d 7448 . . . 4 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → (𝑆 Σg (𝑦 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
207202, 206eqtrd 2776 . . 3 (((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) ∧ ((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌))))
208207ex 412 . 2 ((𝜑 ∧ (𝑏𝑁𝑐 ∈ (𝑁𝑏))) → (((𝑂‘(𝑄 Σg (𝑥𝑏𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑏 ↦ ((𝑂𝑀)‘𝑌))) → ((𝑂‘(𝑄 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ 𝑀)))‘𝑌) = (𝑆 Σg (𝑥 ∈ (𝑏 ∪ {𝑐}) ↦ ((𝑂𝑀)‘𝑌)))))
2097, 14, 21, 28, 87, 208, 105findcard2d 9207 1 (𝜑 → ((𝑂‘(𝑄 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑆 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  csb 3898  cdif 3947  cun 3948  wss 3950  c0 4332  {csn 4625  cmpt 5224  cfv 6560  (class class class)co 7432  Fincfn 8986  Basecbs 17248  .rcmulr 17299  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748  CMndccmn 19799  mulGrpcmgp 20138  1rcur 20179  Ringcrg 20231  CRingccrg 20232  algSccascl 21873  Poly1cpl1 22179  eval1ce1 22319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-evls 22099  df-evl 22100  df-psr1 22182  df-ply1 22184  df-evl1 22321
This theorem is referenced by:  aks6d1c5lem2  42140
  Copyright terms: Public domain W3C validator