MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopni2 Structured version   Visualization version   GIF version

Theorem mopni2 22790
Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopni2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐽   𝑥,𝑃   𝑥,𝑋

Proof of Theorem mopni2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopni 22789 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → ∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴))
31mopnss 22743 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
43sselda 3895 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) ∧ 𝑃𝐴) → 𝑃𝑋)
5 blssex 22724 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴) ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))
65adantlr 711 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) ∧ 𝑃𝑋) → (∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴) ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))
74, 6syldan 591 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) ∧ 𝑃𝐴) → (∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴) ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))
873impa 1103 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → (∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴) ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))
92, 8mpbid 233 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wrex 3108  wss 3865  ran crn 5451  cfv 6232  (class class class)co 7023  +crp 12243  ∞Metcxmet 20216  ballcbl 20218  MetOpencmopn 20221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-n0 11752  df-z 11836  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-topgen 16550  df-psmet 20223  df-xmet 20224  df-bl 20226  df-mopn 20227  df-top 21190  df-topon 21207  df-bases 21242
This theorem is referenced by:  mopni3  22791  neibl  22798  met1stc  22818  met2ndci  22819  prdsxmslem2  22826  metcnp3  22837  xrsmopn  23107  iccntr  23116  icccmplem3  23119  reconnlem2  23122  opnreen  23126  metdseq0  23149  cnllycmp  23247  nmhmcn  23411  lmmbr  23548  cfilfcls  23564  iscmet3lem2  23582  bcthlem5  23618  opnmbllem  23889  ellimc3  24164  lhop  24300  dvcnvre  24303  xrlimcnp  25232  lgamucov  25301  ubthlem1  28334  cnllysconn  32102  ptrecube  34444  opnmbllem0  34480  heiborlem8  34649  qndenserrnopnlem  42146  opnvonmbllem2  42479
  Copyright terms: Public domain W3C validator