MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopni2 Structured version   Visualization version   GIF version

Theorem mopni2 24432
Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopni2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐽   𝑥,𝑃   𝑥,𝑋

Proof of Theorem mopni2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopni 24431 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → ∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴))
31mopnss 24385 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
43sselda 3958 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) ∧ 𝑃𝐴) → 𝑃𝑋)
5 blssex 24366 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴) ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))
65adantlr 715 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) ∧ 𝑃𝑋) → (∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴) ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))
74, 6syldan 591 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) ∧ 𝑃𝐴) → (∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴) ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))
873impa 1109 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → (∃𝑦 ∈ ran (ball‘𝐷)(𝑃𝑦𝑦𝐴) ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴))
92, 8mpbid 232 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽𝑃𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  wss 3926  ran crn 5655  cfv 6531  (class class class)co 7405  +crp 13008  ∞Metcxmet 21300  ballcbl 21302  MetOpencmopn 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884
This theorem is referenced by:  mopni3  24433  neibl  24440  met1stc  24460  met2ndci  24461  prdsxmslem2  24468  metcnp3  24479  xrsmopn  24752  iccntr  24761  icccmplem3  24764  reconnlem2  24767  opnreen  24771  metdseq0  24794  cnllycmp  24906  nmhmcn  25071  lmmbr  25210  cfilfcls  25226  iscmet3lem2  25244  bcthlem5  25280  opnmbllem  25554  ellimc3  25832  lhop  25973  dvcnvre  25976  xrlimcnp  26930  lgamucov  27000  ubthlem1  30851  cnllysconn  35267  ptrecube  37644  opnmbllem0  37680  heiborlem8  37842  qndenserrnopnlem  46326  opnvonmbllem2  46662
  Copyright terms: Public domain W3C validator