![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mopni2 | Structured version Visualization version GIF version |
Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
mopni.1 | β’ π½ = (MetOpenβπ·) |
Ref | Expression |
---|---|
mopni2 | β’ ((π· β (βMetβπ) β§ π΄ β π½ β§ π β π΄) β βπ₯ β β+ (π(ballβπ·)π₯) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopni.1 | . . 3 β’ π½ = (MetOpenβπ·) | |
2 | 1 | mopni 24223 | . 2 β’ ((π· β (βMetβπ) β§ π΄ β π½ β§ π β π΄) β βπ¦ β ran (ballβπ·)(π β π¦ β§ π¦ β π΄)) |
3 | 1 | mopnss 24174 | . . . . 5 β’ ((π· β (βMetβπ) β§ π΄ β π½) β π΄ β π) |
4 | 3 | sselda 3983 | . . . 4 β’ (((π· β (βMetβπ) β§ π΄ β π½) β§ π β π΄) β π β π) |
5 | blssex 24155 | . . . . 5 β’ ((π· β (βMetβπ) β§ π β π) β (βπ¦ β ran (ballβπ·)(π β π¦ β§ π¦ β π΄) β βπ₯ β β+ (π(ballβπ·)π₯) β π΄)) | |
6 | 5 | adantlr 711 | . . . 4 β’ (((π· β (βMetβπ) β§ π΄ β π½) β§ π β π) β (βπ¦ β ran (ballβπ·)(π β π¦ β§ π¦ β π΄) β βπ₯ β β+ (π(ballβπ·)π₯) β π΄)) |
7 | 4, 6 | syldan 589 | . . 3 β’ (((π· β (βMetβπ) β§ π΄ β π½) β§ π β π΄) β (βπ¦ β ran (ballβπ·)(π β π¦ β§ π¦ β π΄) β βπ₯ β β+ (π(ballβπ·)π₯) β π΄)) |
8 | 7 | 3impa 1108 | . 2 β’ ((π· β (βMetβπ) β§ π΄ β π½ β§ π β π΄) β (βπ¦ β ran (ballβπ·)(π β π¦ β§ π¦ β π΄) β βπ₯ β β+ (π(ballβπ·)π₯) β π΄)) |
9 | 2, 8 | mpbid 231 | 1 β’ ((π· β (βMetβπ) β§ π΄ β π½ β§ π β π΄) β βπ₯ β β+ (π(ballβπ·)π₯) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwrex 3068 β wss 3949 ran crn 5678 βcfv 6544 (class class class)co 7413 β+crp 12980 βMetcxmet 21131 ballcbl 21133 MetOpencmopn 21136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-n0 12479 df-z 12565 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-topgen 17395 df-psmet 21138 df-xmet 21139 df-bl 21141 df-mopn 21142 df-top 22618 df-topon 22635 df-bases 22671 |
This theorem is referenced by: mopni3 24225 neibl 24232 met1stc 24252 met2ndci 24253 prdsxmslem2 24260 metcnp3 24271 xrsmopn 24550 iccntr 24559 icccmplem3 24562 reconnlem2 24565 opnreen 24569 metdseq0 24592 cnllycmp 24704 nmhmcn 24869 lmmbr 25008 cfilfcls 25024 iscmet3lem2 25042 bcthlem5 25078 opnmbllem 25352 ellimc3 25630 lhop 25767 dvcnvre 25770 xrlimcnp 26707 lgamucov 26776 ubthlem1 30388 cnllysconn 34532 ptrecube 36793 opnmbllem0 36829 heiborlem8 36991 qndenserrnopnlem 45313 opnvonmbllem2 45649 |
Copyright terms: Public domain | W3C validator |