| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbupgrel | Structured version Visualization version GIF version | ||
| Description: A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025.) |
| Ref | Expression |
|---|---|
| clnbuhgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clnbuhgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clnbupgrel | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbuhgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | clnbuhgr.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | clnbupgr 47820 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸})) |
| 4 | 3 | eleq2d 2827 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}))) |
| 5 | 4 | 3adant3 1133 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}))) |
| 6 | elun 4153 | . . . 4 ⊢ (𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}) ↔ (𝑁 ∈ {𝐾} ∨ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸})) | |
| 7 | preq2 4734 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → {𝐾, 𝑛} = {𝐾, 𝑁}) | |
| 8 | 7 | eleq1d 2826 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ({𝐾, 𝑛} ∈ 𝐸 ↔ {𝐾, 𝑁} ∈ 𝐸)) |
| 9 | 8 | elrab 3692 | . . . . 5 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸} ↔ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)) |
| 10 | 9 | orbi2i 913 | . . . 4 ⊢ ((𝑁 ∈ {𝐾} ∨ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}) ↔ (𝑁 ∈ {𝐾} ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸))) |
| 11 | 6, 10 | bitri 275 | . . 3 ⊢ (𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}) ↔ (𝑁 ∈ {𝐾} ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸))) |
| 12 | elsng 4640 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ {𝐾} ↔ 𝑁 = 𝐾)) | |
| 13 | 12 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ {𝐾} ↔ 𝑁 = 𝐾)) |
| 14 | 13 | orbi1d 917 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → ((𝑁 ∈ {𝐾} ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)) ↔ (𝑁 = 𝐾 ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)))) |
| 15 | 11, 14 | bitrid 283 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}) ↔ (𝑁 = 𝐾 ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)))) |
| 16 | ibar 528 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → ({𝐾, 𝑁} ∈ 𝐸 ↔ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸))) | |
| 17 | prcom 4732 | . . . . . 6 ⊢ {𝐾, 𝑁} = {𝑁, 𝐾} | |
| 18 | 17 | eleq1i 2832 | . . . . 5 ⊢ ({𝐾, 𝑁} ∈ 𝐸 ↔ {𝑁, 𝐾} ∈ 𝐸) |
| 19 | 16, 18 | bitr3di 286 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ((𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸) ↔ {𝑁, 𝐾} ∈ 𝐸)) |
| 20 | 19 | orbi2d 916 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝑁 = 𝐾 ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) |
| 21 | 20 | 3ad2ant3 1136 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → ((𝑁 = 𝐾 ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) |
| 22 | 5, 15, 21 | 3bitrd 305 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {crab 3436 ∪ cun 3949 {csn 4626 {cpr 4628 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 Edgcedg 29064 UPGraphcupgr 29097 ClNeighbVtx cclnbgr 47805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-edg 29065 df-upgr 29099 df-nbgr 29350 df-clnbgr 47806 |
| This theorem is referenced by: isubgr3stgrlem7 47939 |
| Copyright terms: Public domain | W3C validator |