![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbupgrel | Structured version Visualization version GIF version |
Description: A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025.) |
Ref | Expression |
---|---|
clnbuhgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clnbuhgr.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clnbupgrel | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clnbuhgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | clnbuhgr.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | clnbupgr 47439 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) → (𝐺 ClNeighbVtx 𝐾) = ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸})) |
4 | 3 | eleq2d 2812 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}))) |
5 | 4 | 3adant3 1129 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}))) |
6 | elun 4147 | . . . 4 ⊢ (𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}) ↔ (𝑁 ∈ {𝐾} ∨ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸})) | |
7 | preq2 4735 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → {𝐾, 𝑛} = {𝐾, 𝑁}) | |
8 | 7 | eleq1d 2811 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ({𝐾, 𝑛} ∈ 𝐸 ↔ {𝐾, 𝑁} ∈ 𝐸)) |
9 | 8 | elrab 3682 | . . . . 5 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸} ↔ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)) |
10 | 9 | orbi2i 910 | . . . 4 ⊢ ((𝑁 ∈ {𝐾} ∨ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}) ↔ (𝑁 ∈ {𝐾} ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸))) |
11 | 6, 10 | bitri 274 | . . 3 ⊢ (𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}) ↔ (𝑁 ∈ {𝐾} ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸))) |
12 | elsng 4639 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ {𝐾} ↔ 𝑁 = 𝐾)) | |
13 | 12 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ {𝐾} ↔ 𝑁 = 𝐾)) |
14 | 13 | orbi1d 914 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → ((𝑁 ∈ {𝐾} ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)) ↔ (𝑁 = 𝐾 ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)))) |
15 | 11, 14 | bitrid 282 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ ({𝐾} ∪ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ 𝐸}) ↔ (𝑁 = 𝐾 ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)))) |
16 | ibar 527 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → ({𝐾, 𝑁} ∈ 𝐸 ↔ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸))) | |
17 | prcom 4733 | . . . . . 6 ⊢ {𝐾, 𝑁} = {𝑁, 𝐾} | |
18 | 17 | eleq1i 2817 | . . . . 5 ⊢ ({𝐾, 𝑁} ∈ 𝐸 ↔ {𝑁, 𝐾} ∈ 𝐸) |
19 | 16, 18 | bitr3di 285 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ((𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸) ↔ {𝑁, 𝐾} ∈ 𝐸)) |
20 | 19 | orbi2d 913 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝑁 = 𝐾 ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) |
21 | 20 | 3ad2ant3 1132 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → ((𝑁 = 𝐾 ∨ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ 𝐸)) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) |
22 | 5, 15, 21 | 3bitrd 304 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 {crab 3420 ∪ cun 3946 {csn 4625 {cpr 4627 ‘cfv 6545 (class class class)co 7415 Vtxcvtx 28928 Edgcedg 28979 UPGraphcupgr 29012 ClNeighbVtx cclnbgr 47425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-dju 9936 df-card 9974 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12258 df-2 12320 df-n0 12518 df-xnn0 12590 df-z 12604 df-uz 12868 df-fz 13532 df-hash 14342 df-edg 28980 df-upgr 29014 df-nbgr 29265 df-clnbgr 47426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |